scholarly journals Immunohistochemical and Chemical Changes of .BETA.-Citryl-L-glutamate in the Differentiation of Bovine Lens Epithelial Cells into Lens Fiber Cells.

2000 ◽  
Vol 23 (6) ◽  
pp. 704-707 ◽  
Author(s):  
Masanori NARAHARA ◽  
Keiichirou TACHIBANA ◽  
Narumi KURISU ◽  
Michiko KANAZAWA ◽  
Masaharu MIYAKE
2007 ◽  
Vol 27 (20) ◽  
pp. 7236-7247 ◽  
Author(s):  
Junling Jia ◽  
Min Lin ◽  
Lingna Zhang ◽  
J. Philippe York ◽  
Pumin Zhang

ABSTRACT The size of an organ must be tightly controlled so that it fits within an organism. The mammalian lens is a relatively simple organ composed of terminally differentiated, amitotic lens fiber cells capped on the anterior surface by a layer of immature, mitotic epithelial cells. The proliferation of lens epithelial cells fuels the growth of the lens, thus controling the size of the lens. We report that the Notch signaling pathway defines the boundary between proliferation and differentiation in the developing lens. The loss of Notch signaling results in the loss of epithelial cells to differentiation and a much smaller lens. We found that the Notch effector Herp2 is expressed in lens epithelium and directly suppresses p57 Kip2 expression, providing a molecular link between Notch signaling and the cell cycle control machinery during lens development.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1293-1304 ◽  
Author(s):  
A. Yoshiki ◽  
M. Hanazono ◽  
S. Oda ◽  
N. Wakasugi ◽  
T. Sakakura ◽  
...  

This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)


2016 ◽  
Vol 94 ◽  
Author(s):  
K. Galichanin ◽  
Z. Yu ◽  
N. Talebizadeh ◽  
M. Burmakin ◽  
P. Söderberg

1990 ◽  
Vol 143 (3) ◽  
pp. 455-459 ◽  
Author(s):  
David C. Beebe ◽  
Judith T. Parmelee ◽  
Karla S. Belcher

1992 ◽  
Vol 103 (1) ◽  
pp. 245-257 ◽  
Author(s):  
E. Tenbroek ◽  
M. Arneson ◽  
L. Jarvis ◽  
C. Louis

MP20 is an intrinsic membrane protein previously identified in mammalian lens fiber cells. To identify a possible role for this protein in the lens, the distribution of MP20 and connexin46 has now been examined. Western immunoblotting with an anti-peptide antibody generated to the C-terminal 8 amino acids of MP20 confirmed the presence of this protein in the lens of several different mammalian species. A monoclonal antibody 5H1 was prepared that, in Western blots of bovine lesn membranes, recognized the same component as an antibody to rat connexin46 (Cx46). The apparent molecular mass of this component decreased from 59 kDa to 55 kDa following treatment of lens membranes with alkaline phosphatase. A monoclonal antibody to connexin-related MP70 recognized a 70 kDa component in bovine lens membranes confirming the presence of these two different connexin proteins in bovine lens membranes. To localize MP20 and Cx46 in the bovine lens membrane, lens fiber cell bundles were immunofluorescently labeled with both the MP20 antibody, and the monoclonal antibody to Cx46. Cx46 was identified in large plaques on the broad faces of the lens fiber cells throughout the outer 1 mm of the lens cortex. MP20 colocalized with Cx46 only in a restricted area 0.5 mm to 1.0 mm into the lens. In other regions of the lens, MP20 appeared more diffusely distributed over the fiber cell surface, although apparently concentrated in the ball-and-socket regions at the corners of the narrow side of the inner cortical lens fiber cells. These inner cortical regions were devoid of Cx46. A difference in distribution of these two proteins was confirmed in studies of immunofluorescently labeled lens cryosections. Furthermore, immunogold electron microscopy of purified lens membranes identified MP20 in both junctional regions (with Cx46) and in single membranes. These results provide evidence for a role for MP20 in mammalian lens fiber cell junctional formation or organization.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hidetoshi Ishida ◽  
Teppei Shibata ◽  
Yuka Nakamura ◽  
Yasuhito Ishigaki ◽  
Dhirendra P. Singh ◽  
...  

The Shumiya cataract rat (SCR) is a model for hereditary cataract. Two-thirds of these rats develop lens opacity within 10-11 weeks. Onset of cataract is attributed to the synergetic effect of lanosterol synthase (Lss) and farnesyl-diphosphate farnesyltransferase 1 (Fdft1) mutant alleles that lead to cholesterol deficiency in the lenses, which in turn adversely affects lens biology including the growth and differentiation of lens epithelial cells (LECs). Nevertheless, the molecular events and changes in gene expression associated with the onset of lens opacity in SCR are poorly understood. In the present study, a microarray-based approach was employed to analyze comparative gene expression changes in LECs isolated from the precataractous and cataractous stages of lenses of 5-week-old SCRs. The changes in gene expression observed in microarray results in the LECs were further validated using real-time reverse transcribed quantitative PCR (RT-qPCR) in 5-, 8-, and 10-week-old SCRs. A mild posterior and cortical opacity was observed in 5-week-old rats. Expressions of approximately 100 genes, including the major intrinsic protein of the lens fiber (Mip and Aquaporin 0), deoxyribonuclease II beta (Dnase2B), heat shock protein B1 (HspB1), and crystallin γ (γCry) B, C, and F, were found to be significantly downregulated (0.07-0.5-fold) in rat LECs derived from cataract lenses compared to that in noncataractous lenses (control). Thus, our study was aimed at identifying the gene expression patterns during cataract formation in SCRs, which may be responsible for cataractogenesis in SCR. We proposed that cataracts in SCR are associated with reduced expression of these lens genes that have been reported to be related with lens fiber differentiation. Our findings may have wider implications in understanding the effect of cholesterol deficiency and the role of cholesterol-lowering therapeutics on cataractogenesis.


Sign in / Sign up

Export Citation Format

Share Document