scholarly journals The Notch Signaling Pathway Controls the Size of the Ocular Lens by Directly Suppressing p57Kip2 Expression

2007 ◽  
Vol 27 (20) ◽  
pp. 7236-7247 ◽  
Author(s):  
Junling Jia ◽  
Min Lin ◽  
Lingna Zhang ◽  
J. Philippe York ◽  
Pumin Zhang

ABSTRACT The size of an organ must be tightly controlled so that it fits within an organism. The mammalian lens is a relatively simple organ composed of terminally differentiated, amitotic lens fiber cells capped on the anterior surface by a layer of immature, mitotic epithelial cells. The proliferation of lens epithelial cells fuels the growth of the lens, thus controling the size of the lens. We report that the Notch signaling pathway defines the boundary between proliferation and differentiation in the developing lens. The loss of Notch signaling results in the loss of epithelial cells to differentiation and a much smaller lens. We found that the Notch effector Herp2 is expressed in lens epithelium and directly suppresses p57 Kip2 expression, providing a molecular link between Notch signaling and the cell cycle control machinery during lens development.

2020 ◽  
Author(s):  
Jie Yu ◽  
Wenwen Zhang ◽  
Jiayue Huang ◽  
Yating Gou ◽  
Congcong Sun ◽  
...  

Abstract Background: Human amniotic mesenchymal stem cells(hAMSCs) can repair and improve the damaged endometrium which its aplastic disorder is the main reason for intrauterine adhesions(IUAs).Methods: We conducted in vivo and in vitro experiments. In vivo experiments: 45 female Sprague-Dawley(SD) rats were involved and randomized equally into Sham group, IUA group, Estradiol(E2) group, hAMSCs group, and E2 + hAMSCs group. The effect of hAMSCs and E2 only or combined was evaluated by Hematoxylin-eosin(HE) and Masson staining. The expression of epithelial markers and key proteins of Notch signaling pathway by Immunohistochemistry. In vitro experiments: Firstly, the hAMSCs cells were taken and divided into control group and induced group in which hAMSCs were differentiated into endometrial epithelial cells in induced microenvironment, and extracted their RNA respectively. The expression of epithelial markers and Notch1 messenger RNA (mRNA) was detected by Real-time quantitative polymerase chain reaction(qRT-PCR). and the changes in expression position of Notch intracellular domain(NICD) and expression amount of target gene, hairy enhancer of split 1(Hes1) were detected by Immunofluorescence. Then, Activated and inhibited the Notch signaling pathway while induction, and detected mRNA expression of hAMSCs epithelial markers by quantitative real-time polymerase chainreaction (qRT-PCR) respectively and detected hAMSCs cell cycle by flow cytometric. Results:This study showed that hAMSCs alone or combined with E2 could promote endometrial repair, and Notch signaling pathway a great role in it. And otherwise, the activation or habitation of Notch signaling pathway determines whether hAMSCs could differentiate into endometrial epithelial cells or not.Conclusion: we concluded that activate the Notch signaling pathway promote the differentiation of hAMSCs into endometrial epithelial cells, and further treat IUAs.


2021 ◽  
Author(s):  
Xin Ye ◽  
Mengyi Li ◽  
Wei Bian ◽  
Junwei Li ◽  
Ting Zhang ◽  
...  

Abstract Although the ependymal cells were reported to have the characteristics of neural stem cells (NSCs), the properties of CD133-ependymal cells have not been uncovered, in particular, it is largely unknown about the effect of Notch signaling pathway on the neurogenesis of CD133-positive ependymal cells. By using the transgenic mouse and primarily cultured ependymal cells, we found that the immunoreactivity for prominin-1/CD133 was exclusively localized in the subventricular zone (SVZ) and ependymal layer of ventricles, moreover, most CD133-positive ependymal cells were co-labeled with Nestin. In addition, RBP-J, a key nuclear effector of Notch signaling pathway, was highly active in CD133-positive ependymal cells. Our results demonstrated that CD133-positive ependymal cells can differentiate into the immature and mature neurons, in particular, the number of CD133-positive ependymal cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and Western blot, we found that RBP-J and Hes1 were down-regulated while Notch1 was up-regulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J in vivo or in vitro. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive ependymal cells. Therefore, we speculated that RBP-J could maintain CD133-positive ependymal cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway.


Sign in / Sign up

Export Citation Format

Share Document