scholarly journals Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats

2021 ◽  
Vol 44 (12) ◽  
pp. 1860-1865
Author(s):  
Asami Mori ◽  
Ryo Namekawa ◽  
Kenji Sakamoto ◽  
Kunio Ishii ◽  
Tsutomu Nakahara
Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


Author(s):  
J. Metz ◽  
M. Merlo ◽  
W. G. Forssmann

Structure and function of intercellular junctions were studied under the electronmicroscope using conventional thin sectioning and freeze-etch replicas. Alterations of tight and gap junctions were analyzed 1. of exocrine pancreatic cells under cell isolation conditions and pancreatic duct ligation and 2. of hepatocytes during extrahepatic cholestasis.During the different steps of cell isolation of exocrine pancreatic cells, gradual changes of tight and gap junctions were observed. Tight junctions, which formed belt-like structures around the apex of control acinar cells in situ, subsequently diminished, became interrupted and were concentrated into macular areas (Fig. 1). Aggregations of membrane associated particles, which looked similar to gap junctions, were intermixed within tight junctional areas (Fig. 1). These structures continously disappeared in the last stages of the isolation procedure. The intercellular junctions were finally separated without destroying the integrity of the cell membrane, which was confirmed with porcion yellow, lanthanum chloride and horse radish peroxidase.


Author(s):  
Camillo Peracchia ◽  
Stephen J. Girsch

The fiber cells of eye lens communicate directly with each other by exchanging ions, dyes and metabolites. In most tissues this type of communication (cell coupling) is mediated by gap junctions. In the lens, the fiber cells are extensively interconnected by junctions. However, lens junctions, although morphologically similar to gap junctions, differ from them in a number of structural, biochemical and immunological features. Like gap junctions, lens junctions are regions of close cell-to-cell apposition. Unlike gap junctions, however, the extracellular gap is apparently absent in lens junctions, such that their thickness is approximately 2 nm smaller than that of typical gap junctions (Fig. 1,c). In freeze-fracture replicas, the particles of control lens junctions are more loosely packed than those of typical gap junctions (Fig. 1,a) and crystallize, when exposed to uncoupling agents such as Ca++, or H+, into pseudo-hexagonal, rhombic (Fig. 1,b) and orthogonal arrays with a particle-to-particle spacing of 6.5 nm. Because of these differences, questions have been raised about the interpretation of the lens junctions as communicating junctions, in spite of the fact that they are the only junctions interlinking lens fiber cells.


Author(s):  
W. J. Larsen ◽  
R. Azarnia ◽  
W. R. Loewenstein

Although the physiological significance of the gap junction remains unspecified, these membrane specializations are now recognized as common to almost all normal cells (excluding adult striated muscle and some nerve cells) and are found in organisms ranging from the coelenterates to man. Since it appears likely that these structures mediate the cell-to-cell movement of ions and small dye molecules in some electrical tissues, we undertook this study with the objective of determining whether gap junctions in inexcitable tissues also mediate cell-to-cell coupling.To test this hypothesis, a coupling, human Lesh-Nyhan (LN) cell was fused with a non-coupling, mouse cl-1D cell, and the hybrids, revertants, and parental cells were analysed for coupling with respect both to ions and fluorescein and for membrane junctions with the freeze fracture technique.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


2015 ◽  
Vol 53 (01) ◽  
Author(s):  
JHK Andruszkow ◽  
S Groos ◽  
C Klaus ◽  
U Schneider ◽  
C Petersen ◽  
...  

Diabetes ◽  
1983 ◽  
Vol 32 (9) ◽  
pp. 858-868 ◽  
Author(s):  
P. Meda ◽  
R. L. Michaels ◽  
P. A. Halban ◽  
L. Orci ◽  
J. D. Sheridan

Tsitologiya ◽  
2018 ◽  
Vol 60 (6) ◽  
pp. 448-454
Author(s):  
E. Yu. Kirichenko ◽  
◽  
P.E. Povilaitite ◽  
A.K. Logvinov ◽  
Yu. G. Kirichenko ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document