scholarly journals Force Velocity Modulation Differences During Isokinetic And Isometric Extension Between ACL Reconstructed And Healthy Knees

2021 ◽  
Vol 53 (8S) ◽  
pp. 440-441
Author(s):  
Xavier D. Thompson ◽  
Amelia S. Bruce ◽  
Joe M. Hart
Author(s):  
Jelizaveta Konstantinova ◽  
Min Li ◽  
Vahid Aminzadeh ◽  
Prokar Dasgupta ◽  
Kaspar Althoefer ◽  
...  

2019 ◽  
Vol 22 (sup1) ◽  
pp. S350-S351
Author(s):  
C. Giroux ◽  
R. Hager ◽  
J. Feugray ◽  
G. Lauby ◽  
S. Dorel ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1808
Author(s):  
Liqiang Zhuo ◽  
Huiru He ◽  
Ruimin Huang ◽  
Shaojian Su ◽  
Zhili Lin ◽  
...  

The valley degree of freedom, like the spin degree of freedom in spintronics, is regarded as a new information carrier, promoting the emerging valley photonics. Although there exist topologically protected valley edge states which are immune to optical backscattering caused by defects and sharp edges at the inverse valley Hall phase interfaces composed of ordinary optical dielectric materials, the dispersion and the frequency range of the edge states cannot be tuned once the geometrical parameters of the materials are determined. In this paper, we propose a chirped valley graphene plasmonic metamaterial waveguide composed of the valley graphene plasmonic metamaterials (VGPMs) with regularly varying chemical potentials while keeping the geometrical parameters constant. Due to the excellent tunability of graphene, the proposed waveguide supports group velocity modulation and zero group velocity of the edge states, where the light field of different frequencies focuses at different specific locations. The proposed structures may find significant applications in the fields of slow light, micro–nano-optics, topological plasmonics, and on-chip light manipulation.


2021 ◽  
Vol 6 (2) ◽  
pp. 32
Author(s):  
Conor McNeill ◽  
C. Martyn Beaven ◽  
Daniel T. McMaster ◽  
Nicholas Gill

Eccentric strength characteristics have been shown to be important factors in physical performance. Many eccentric tests have been performed in isolation or with supramaximal loading. The purpose of this study was to investigate within- and between- session reliability of an incremental eccentric back squat protocol. Force plates and a linear position transducer captured force-time-displacement data across six loading conditions, separated by at least seven days. The reliability of eccentric specific measurements was assessed using coefficient of variation (CV), change in mean, and intraclass correlation coefficient (ICC). Eccentric peak force demonstrated good ICC (≥0.82) and TE (≤7.3%) for each load. Variables based on mean data were generally less reliable (e.g., mean rate of force development, mean force, mean velocity). This novel protocol meets acceptable levels of reliability for different eccentric-specific measurements although the extent to which these variables affect dynamic performance requires further research.


Author(s):  
Andrés Baena-Raya ◽  
Manuel A. Rodríguez-Pérez ◽  
Pedro Jiménez-Reyes ◽  
Alberto Soriano-Maldonado

Sprint running and change of direction (COD) present similar mechanical demands, involving an acceleration phase in which athletes need to produce and apply substantial horizontal external force. Assessing the mechanical properties underpinning individual sprint acceleration might add relevant information about COD performance in addition to that obtained through sprint time alone. The present technical report uses a case series of three athletes with nearly identical 20 m sprint times but with different mechanical properties and COD performances. This makes it possible to illustrate, for the first time, a potential rationale for why the sprint force-velocity (FV) profile (i.e., theoretical maximal force (F0), velocity (V0), maximal power output (Pmax), ratio of effective horizontal component (RFpeak) and index of force application technique (DRF)) provides key information about COD performance (i.e., further to that derived from simple sprint time), which can be used to individualize training. This technical report provides practitioners with a justification to assess the FV profile in addition to sprint time when the aim is to enhance sprint acceleration and COD performance; practical interpretations and advice on how training interventions could be individualized based on the athletes’ differential sprint mechanical properties are also specified.


2013 ◽  
Vol 36 (3) ◽  
pp. 321-330
Author(s):  
Ruidong Wang

2020 ◽  
Vol 120 (8) ◽  
pp. 1881-1891 ◽  
Author(s):  
Carlos Alix-Fages ◽  
Amador García-Ramos ◽  
Giancarlo Calderón-Nadal ◽  
David Colomer-Poveda ◽  
Salvador Romero-Arenas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document