scholarly journals Effect of microscopic temperature distribution upon local mass transfer rate in porous media.

1986 ◽  
Vol 12 (5) ◽  
pp. 595-602 ◽  
Author(s):  
Masashi Kuramae
1979 ◽  
Vol 12 (6) ◽  
pp. 483-485
Author(s):  
RYUZO ITO ◽  
KAORU TOMURA ◽  
MASAO YAMAMOTO ◽  
YUKIE OKADA ◽  
NOBUHIRO TSUBOI ◽  
...  

1964 ◽  
Vol 68 (638) ◽  
pp. 137-139 ◽  
Author(s):  
K. Lee ◽  
H. Barrow ◽  
D. J. Ryley

The purpose of this note is to report the results of an experimental investigation which was conducted to permit the local mass transfer rate around a sphere to be visualised. The present problem of mass transfer from a sphere had its origin in a study of the evaporation of a water droplet in a superheated steam atmosphere. Because of the small physical size of the droplet and the difficulty of measuring local mass transfer rates from the droplet surface, it was necessary to employ a large scale model to study local transfer rate around a sphere. It was considered that flow visualisation would afford at least a qualitative result of local mass transfer rate. In fluid mechanics studies, the flow visualisation techniques are well known. Such methods include the use of smoke filaments, tufts, or chemical coatings and so forth to provide information about the state of boundary layer over a solid surface, fluid particle paths and state of flow.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 110
Author(s):  
Dmitry Bisikalo ◽  
Andrey Sobolev ◽  
Andrey Zhilkin

In this paper, the characteristics of hot spots on an accretor surface are investigated for two types of polars: the eclipsing synchronous polar V808 Aur and the non-eclipsing asynchronous polar CD Ind in configuration of an offset and non-offset magnetic dipole. The drift of hot spots is analyzed based on the results of numerical calculations and maps of the temperature distribution over the accretor surface. It is shown that a noticeable displacement of the spots is determined by the ratio of ballistic and magnetic parts of the jet trajectory. In the synchronous polar, the dominant influence on the drift of hot spots is exerted by variations in the mass transfer rate, which entail a change in the ballistic part of the trajectory. It was found that when the mass transfer rate changes within the range of 10−10M⊙/year to 10−7M⊙/year, the displacement of the hot spot in latitude and longitude can reach 30∘. In the asynchronous polar, a change in the position of hot spots is mainly defined by the properties of the white dwarf magnetosphere, and the displacement of hot spots in latitude and longitude can reach 20∘.


Author(s):  
Anindityo Patmonoaji ◽  
Yingxue Hu ◽  
Muhammad Nasir ◽  
Chunwei Zhang ◽  
Tetsuya Suekane

Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

Couette-Taylor-Poiseuille flow CTPF consists on the superposition of Couette-Taylor flow to an axial flow. The CTPF flow hydrodynamics studies remain rather qualitative or numerical or are restricted to relatively low Taylor and/or axial Reynolds numbers. For more comprehensive and control of CTPF, especially for relatively high Taylor numbers and high axial Reynolds numbers, we investigated experimentally CTF with and without an axial flow, using the electro-diffusion ED method. This technique requires the use of Electro-Diffusion ED probe which allows the determination of the local mass transfer rate from the Limiting Diffusion current measurement delivered by the ED probe while it is polarized by a polarization voltage. From the local mass transfer (the Sherwood number), we determined the wall shear rate using different approaches. The results illustrate that low axial flow can generate a stabilizing effect on the CT flow. The time-evolutions of the local mass transfer and the wall shear rate are periodic. These evolutions characterize the waviness or the stretching of the vortices. However, Taylor Wavy Vortex Flow TWVF is destabilized under the effect of relatively important axial flow. The time-evolutions of wall shear rate are no longer periodic. Indeed, Taylor vortices are overlapped or completely destructed.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
D. Wang ◽  
D. Ewing ◽  
T. Le ◽  
C. Y. Ching

The local mass transfer and the resulting roughness in a 203 mm diameter back-to-back bend arranged in an S-configuration were measured at a Reynolds number of 300,000. A dissolving wall method using gypsum dissolution to water at 40 °C was used, with a Schmidt number of 660. The topography of the unworn and worn inner surface was quantified using nondestructive X-ray computed tomography (CT) scans. The local mass transfer rate was obtained from the local change in radius over the flow time. Two regions of high mass transfer were present: (i) along the intrados of the first bend near the inlet and (ii) at the exit of the extrados of the first bend that extends to the intrados of the second bend. The latter was the region of highest mass transfer, and the scaling of the maximum Sherwood number with Reynolds number followed that developed for lower Reynolds numbers. The relative roughness distribution in the bend corresponded to the mass transfer distribution, with higher roughness in the higher mass transfer regions. The spacing of the roughness elements in the upstream pipe and in the two regions of high mass transfer was approximately the same; however, the spacing-to-height ratio was very different with values of 20, 10, and 6, respectively.


2014 ◽  
Author(s):  
D. Wang ◽  
D. Ewing ◽  
T. Le ◽  
C. Y. Ching

The local mass transfer in a 203mm diameter back to back bend arranged in a S-configuration was measured at a Reynolds number of 300,000. A dissolving wall method using gypsum dissolution to water at 40°C was used, with a Schmidt number of 660. The experiment was performed in a flow loop by flowing water through the test section. The topography of the unworn and the worn inner surface was quantified using nondestructive X-ray Computed Tomography (CT) scans. The two scanned surfaces were aligned to a common coordinate system using commercial software and in-house routines. The local mass transfer rate was obtained from the local change in radius over the flow time. Two regions of high mass transfer were present: (i) along the intrados of the first bend near the inlet and (ii) at the exit of the extrados of the first bend that extends to the intrados of the second bend. The latter was the region of highest mass transfer in the S-bend.


Sign in / Sign up

Export Citation Format

Share Document