scholarly journals Numerical analysis of the mixing process for high viscosity pseudoplastic luquids in mixers with various plate types of impeller.

1990 ◽  
Vol 16 (4) ◽  
pp. 820-829 ◽  
Author(s):  
Meguru Kaminoyama ◽  
Fumio Saito ◽  
Mitsuo Kamiwano
2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


2019 ◽  
Vol 19 (3) ◽  
pp. 1843-1847 ◽  
Author(s):  
Young-Bog Ham ◽  
Byeung-Cheol An ◽  
Mojiz Abbas Trimzi ◽  
Jung-Ho Park ◽  
So-Nam Yun

Author(s):  
Tetsuaki Takeda ◽  
Shumpei Funatani

A depressurization accident is a design-basis accidents of a very high temperature reactor. When a depressurization accident occurs, air is expected to enter the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, it is important to know a mixing process of different kind of gases in the stable and unstable stratified fluid layer. Especially, it is also important to examine an influence of localized natural convection and molecular diffusion on mixing process from a viewpoint of safety. In order to predict and analyze the phenomena of air ingress during a depressurization accident, therefore, it is important to develop the method for prevention of air ingress during the accident. We have carried out an experiment and a numerical analysis using three-dimensional computational fluid dynamics (3D CFD) to obtain the mixing process of two component gases and flow characteristics of the localized natural convection. This study is also to investigate a control method of natural circulation of air by injection of helium gas. The numerical model consists of a storage tank and a reverse U-shaped vertical slot. They are separated by a partition plate. One side of the left wall of the left side vertical slot is heated and the other side was cooled. The right side vertical slot is cooled. The procedure of the experiment and the numerical analysis is as follows. Firstly, the storage tank was filled with heavy gas and the reverse U-shaped vertical slot was filled with light gas. In the left side vertical slot, the localized natural convection was generated by the temperature difference between the vertical walls. The flow characteristics were obtained by the experiment and steady state analysis. The unsteady state experiment and analysis were started after the partition plate was opened. The result obtained in the experiment was simulated by the numerical analysis quantitatively. The gases were mixed by molecular diffusion and natural convection. After the time elapsed, natural circulation occurred. When the temperature difference of the left vertical fluid layer was set to 100K and the combination of the mixed gas was helium and nitrogen, natural circulation produced after 110 minutes elapsed.


2013 ◽  
Vol 239 ◽  
pp. 422-433 ◽  
Author(s):  
Majid Mostafazadeh ◽  
Hassan Rahimzadeh ◽  
Mahdi Hamzei

Author(s):  
Richard Bergman ◽  
Alexander Efremov ◽  
Pierre Woehl

Mixing of fluids is a common and often critical step in microfluidic systems. In typical large scale processes turbulence greatly speeds the mixing process. At the mini and micro-scales, however, the flow is laminar and the benefits of turbulent mixing are not present. Mixing at the mini- and micro-scales tends to become a more highly engineered process of bringing fluids together in predictable ways to achieve a predetermined and acceptable level of mixing. This paper summarizes a numerical analysis of the mixing performance of a vaned circular micromixer. A newly developed mixing metric suitable for reacting fluids is developed for this study. Applying the basic steps of stretching, cutting, and stacking to effect mixing, a useful micromixer is analyzed numerically for its mixing efficiency. A parametric study of flow and viscosity indicate that a flow Re of 12 or higher is sufficient to achieve effective and rapid mixing in this device.


2005 ◽  
Vol 2005.80 (0) ◽  
pp. _3-21_-_3-22_
Author(s):  
Hiroshi KAWANABE ◽  
Yusuke NAITO ◽  
Takuji ISHIYAMA

2006 ◽  
Vol 2006.3 (0) ◽  
pp. 159-160
Author(s):  
Takeshi KAJIUCHI ◽  
Kenichiro TAKEISHI ◽  
Yutaka ODA ◽  
Takanori Kumagai

Sign in / Sign up

Export Citation Format

Share Document