scholarly journals Allopurinol Improves Cardiac Dysfunction After Ischemia-Reperfusion via Reduction of Oxidative Stress in Isolated Perfused Rat Hearts

2003 ◽  
Vol 67 (9) ◽  
pp. 781-787 ◽  
Author(s):  
Yoshiharu Kinugasa ◽  
Kazuhide Ogino ◽  
Yoshiyuki Furuse ◽  
Tetsuya Shiomi ◽  
Hiroyuki Tsutsui ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Michaela Andrä ◽  
Miriam Russ ◽  
Susanne Jauk ◽  
Mariana Lamacie ◽  
Ingrid Lang ◽  
...  

As progressive organ shortage in cardiac transplantation demands extension of donor criteria, effort is needed to optimize graft survival. Reactive oxygen and nitrogen species, generated during organ procurement, transplantation, and reperfusion, contribute to acute and late graft dysfunction. The combined application of diverse substances acting via different molecular pathways appears to be a reasonable approach to face the complex mechanism of ischemia reperfusion injury. Thus, an antioxidant solution containing α-ketoglutaric acid, 5-hydroxymethylfurfural, N-acetyl-L-methionine, and N-acetyl-selenium-L-methionine was combined with endogenous angiotensin-(1-7). Its capacity of myocardial protection was investigated in isolated Langendorff-perfused rat hearts subjected to warm and cold ischemia. The physiological cardiac parameters were assessed throughout the experiments. Effects were evaluated via determination of the oxidative stress parameters malondialdehyde and carbonyl proteins as well as immunohistochemical and ultrastructural tissue analyses. It was shown that a combination of 20% (v/v) antioxidant solution and 220 pM angiotensin-(1-7) led to the best results with a preservation of heart tissue against oxidative stress and morphological alteration. Additionally, immediate cardiac recovery (after warm ischemia) and normal physiological performance (after cold ischemia) were recorded. Overall, the results of this study indicate substantial cardioprotection of the novel combination with promising prospective for future clinical use.


2002 ◽  
Vol 124 (4) ◽  
pp. 775-784 ◽  
Author(s):  
Satoshi Yamashiro ◽  
Katsuhiko Noguchi ◽  
Toshihiro Matsuzaki ◽  
Kanako Miyagi ◽  
Junko Nakasone ◽  
...  

2008 ◽  
Vol 294 (5) ◽  
pp. H2088-H2097 ◽  
Author(s):  
Philippe Pasdois ◽  
Bertrand Beauvoit ◽  
Liliane Tariosse ◽  
Béatrice Vinassa ◽  
Simone Bonoron-Adèle ◽  
...  

This study analyzed the oxidant generation during ischemia-reperfusion protocols of Langendorff-perfused rat hearts, preconditioned with a mitochondrial ATP-sensitive potassium channel (mitoKATP) opener (i.e., diazoxide). The autofluorescence of mitochondrial flavoproteins, and that of the total NAD(P)H pool on the one hand and the fluorescence of dyes sensitive to H2O2 or O2•− [i.e., the dihydrodichlorofluoroscein (H2DCF) and dihydroethidine (DHE), respectively] on the other, were noninvasively measured at the surface of the left ventricular wall by means of optic fibers. Isolated perfused rat hearts were subjected to an ischemia-reperfusion protocol. Opening mitoKATP with diazoxide (100 μM) 1) improved the recovery of the rate-pressure product after reperfusion (72 ± 2 vs. 16.8 ± 2.5% of baseline value in control group, P < 0.01), and 2) attenuated the oxidant generation during both ischemic (−46 ± 5% H2DCF oxidation and −40 ± 3% DHE oxidation vs. control group, P < 0.01) and reperfusion (−26 ± 2% H2DCF oxidation and −23 ± 2% DHE oxidation vs. control group, P < 0.01) periods. All of these effects were abolished by coperfusion of 5-hydroxydecanoic acid (500 μM), a mitoKATP blocker. During the preconditioning phase, diazoxide induced a transient, reversible, and 5-hydroxydecanoic acid-sensitive flavoprotein and H2DCF (but not DHE) oxidation. In conclusion, the diazoxide-mediated cardioprotection is supported by a moderate H2O2 production during the preconditioning phase and a strong decrease in oxidant generation during the subsequent ischemic and reperfusion phases.


2013 ◽  
Vol 19 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Hitoshi Inafuku ◽  
Yukio Kuniyoshi ◽  
Satoshi Yamashiro ◽  
Katsuya Arakaki ◽  
Takaaki Nagano ◽  
...  

1991 ◽  
Vol 260 (1) ◽  
pp. H6-H12 ◽  
Author(s):  
S. M. Humphrey ◽  
P. B. Garlick

Nuclear magnetic resonance (NMR) spectroscopy detects only free, unbound metabolites. We have therefore compared the free high-energy phosphate content of isolated perfused rat hearts (determined by 31P-NMR) with the total high-energy phosphates of the same hearts (determined by chemical analysis) to determine the fractions, if any, that are NMR invisible. Aerobic perfusion (40 min at 37 degrees C, Pi-free Krebs buffer) was followed by 10, 14, or 18 min total global ischemia and 30 min reperfusion (n = 6 in each group). Fully relaxed 31P-NMR spectra (40 scans using 90 degrees pulses at 15-s intervals) were collected at various times throughout the protocol, and the signal intensities of the beta-phosphate of ATP, phosphocreatine (PCr), and Pi were quantified using methylenediphosphonate as an external standard. Hearts were freeze clamped either before ischemia or at the end of reperfusion and were chemically assayed for ATP, PCr, and Pi. After 40 min of normoxia, the ATP and PCr contents determined by NMR were almost identical to the values determined by chemical analysis. However, only 39 +/- 8% of the total Pi was NMR visible. After reperfusion, after 14 or 18 min of ischemia, the proportion of NMR-visible ATP had decreased to 64 +/- 9% (P less than 0.005). After reperfusion after 18 min ischemia, the proportion of NMR-visible Pi had increased to 76 +/- 10% (P less than 0.05). In conclusion, whereas the total cellular content of PCr is always NMR visible, ischemia-reperfusion can alter the fraction of NMR-visible ATP and Pi.


1999 ◽  
Vol 283 (1-2) ◽  
pp. 43-56 ◽  
Author(s):  
Jean-Pierre Bertinchant ◽  
Anne Polge ◽  
Emmanuelle Robert ◽  
Nadia Sabbah ◽  
Pascale Fabbro-Peray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document