Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: a study on Langendorff-perfused rat hearts using optic fibers

2008 ◽  
Vol 294 (5) ◽  
pp. H2088-H2097 ◽  
Author(s):  
Philippe Pasdois ◽  
Bertrand Beauvoit ◽  
Liliane Tariosse ◽  
Béatrice Vinassa ◽  
Simone Bonoron-Adèle ◽  
...  

This study analyzed the oxidant generation during ischemia-reperfusion protocols of Langendorff-perfused rat hearts, preconditioned with a mitochondrial ATP-sensitive potassium channel (mitoKATP) opener (i.e., diazoxide). The autofluorescence of mitochondrial flavoproteins, and that of the total NAD(P)H pool on the one hand and the fluorescence of dyes sensitive to H2O2 or O2•− [i.e., the dihydrodichlorofluoroscein (H2DCF) and dihydroethidine (DHE), respectively] on the other, were noninvasively measured at the surface of the left ventricular wall by means of optic fibers. Isolated perfused rat hearts were subjected to an ischemia-reperfusion protocol. Opening mitoKATP with diazoxide (100 μM) 1) improved the recovery of the rate-pressure product after reperfusion (72 ± 2 vs. 16.8 ± 2.5% of baseline value in control group, P < 0.01), and 2) attenuated the oxidant generation during both ischemic (−46 ± 5% H2DCF oxidation and −40 ± 3% DHE oxidation vs. control group, P < 0.01) and reperfusion (−26 ± 2% H2DCF oxidation and −23 ± 2% DHE oxidation vs. control group, P < 0.01) periods. All of these effects were abolished by coperfusion of 5-hydroxydecanoic acid (500 μM), a mitoKATP blocker. During the preconditioning phase, diazoxide induced a transient, reversible, and 5-hydroxydecanoic acid-sensitive flavoprotein and H2DCF (but not DHE) oxidation. In conclusion, the diazoxide-mediated cardioprotection is supported by a moderate H2O2 production during the preconditioning phase and a strong decrease in oxidant generation during the subsequent ischemic and reperfusion phases.

2010 ◽  
Vol 299 (6) ◽  
pp. H2076-H2081 ◽  
Author(s):  
C. Farah ◽  
G. Meyer ◽  
L. André ◽  
J. Boissière ◽  
S. Gayrard ◽  
...  

Sustained urban carbon monoxide (CO) exposure exacerbates heart vulnerability to ischemia-reperfusion via deleterious effects on the antioxidant status and Ca2+ homeostasis of cardiomyocytes. The aim of this work was to evaluate whether moderate exercise training prevents these effects. Wistar rats were randomly assigned to a control group and to CO groups, living during 4 wk in simulated urban CO pollution (30–100 parts/million, 12 h/day) with (CO-Ex) or sedentary without exercise (CO-Sed). The exercise procedure began 4 wk before CO exposure and was maintained twice a week in standard filtered air during CO exposure. On one set of rats, myocardial ischemia (30 min) and reperfusion (120 min) were performed on isolated perfused rat hearts. On another set of rats, myocardial antioxidant status and Ca2+ handling were evaluated following environmental exposure. As a result, exercise training prevented CO-induced myocardial phenotypical changes. Indeed, exercise induced myocardial antioxidant status recovery in CO-exposed rats, which is accompanied by a normalization of sarco(endo)plasmic reticulum Ca2+-ATPase 2a expression and then of Ca2+ handling. Importantly, in CO-exposed rats, the normalization of cardiomyocyte phenotype with moderate exercise was associated with a restored sensitivity of the myocardium to ischemia-reperfusion. Indeed, CO-Ex rats presented a lower infarct size and a significant decrease of reperfusion arrhythmias compared with their sedentary counterparts. To conclude, moderate exercise, by preventing CO-induced Ca2+ handling and myocardial antioxidant status alterations, reduces heart vulnerability to ischemia-reperfusion.


2002 ◽  
Vol 124 (4) ◽  
pp. 775-784 ◽  
Author(s):  
Satoshi Yamashiro ◽  
Katsuhiko Noguchi ◽  
Toshihiro Matsuzaki ◽  
Kanako Miyagi ◽  
Junko Nakasone ◽  
...  

2020 ◽  
Author(s):  
Ishfaq Bukhari ◽  
Osama Yousif Mohamed ◽  
Rahmathunnisa Lateef ◽  
Sabiha Fatima ◽  
Fahim Vohra ◽  
...  

Abstract Background The present study aims to investigate the protective effect of rutin against cisplatin induced toxic effects on the mechanical performance of the myocardium, histopathology, and oxidative stress in isolated perfused rat hearts. Methods Cardiotoxicity of cisplatin was assessed at three dosage levels (1, 7, and 14 mg/l) in the isolated perfused rat hearts. The toxic effect of cisplarin was assessed on left ventricular pressure (LVP), heart rate (HR), dp/dt(max), dp/dt (min), perfusion pressure, pressure-time index, contractility index and duration of diastole. Measurements were carried out one minute before perfusion of cisplatin and 60 minutes after perfusion. Results Cisplatin reduced significantly (p < 0.05) in a dose-dependent manner LVP, dp/dt(max), dp/dt(min) and pressure- time index. Perfusion of rutin trihydrate (1 µM/l), 10 minutes before administration of cisplatin and throughout the experiment significantly (p < 0.05) attenuated the detrimental effects of cisplatin on cardiac parameters. Cisplatin caused degeneration and necrosis of cardiac muscle cells, while rutin reduced these changes and restored normal heart histology. Moreover, cisplatin reduced the myocardium concentration of reduced glutathione and increased the level of malondialdehyde, whereas rutin almost reversed these changes. Conclusion Cisplatin-induced dose-dependent impairment of several parameters of cardiac function and produced histopathological alterations in isolated rat hearts. These harmful effects of cisplatin were ameliorated by rutin trihydrate. These findings suggest the potential protective effects of rutin trihydrate against cisplatin-induced cardiotoxicity.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Vinoth Kumar Megraj Khandelwal ◽  
R. Balaraman ◽  
Dezider Pancza ◽  
Táňa Ravingerová

Hemidesmus indicus(L.) R. Br. (HI) andHibiscus rosa-sinensisL. (HRS) are widely used traditional medicine. We investigated cardioprotective effects of these plants applied for 15 min at concentrations of 90, 180, and 360 μg/mL in Langendorff-perfused rat hearts prior to 25-min global ischemia/120-min reperfusion (I/R). Functional recovery (left ventricular developed pressure—LVDP, and rate of development of pressure), reperfusion arrhythmias, and infarct size (TTC staining) served as the endpoints. A transient increase in LVDP (32%–75%) occurred at all concentrations of HI, while coronary flow (CF) was significantly increased after HI 180 and 360. Only a moderate increase in LVDP (21% and 55%) and a tendency to increase CF was observed at HRS 180 and 360. HI and HRS at 180 and 360 significantly improved postischemic recovery of LVDP. Both the drugs dose-dependently reduced the numbers of ectopic beats and duration of ventricular tachycardia. The size of infarction was significantly decreased by HI 360, while HRS significantly reduced the infarct size at all concentrations in a dose-dependent manner. Thus, it can be concluded that HI might cause vasodilation, positive inotropic effect, and cardioprotection, while HRS might cause these effects at higher concentrations. However, further study is needed to elucidate the exact mechanism of their actions.


1999 ◽  
Vol 277 (1) ◽  
pp. H136-H143 ◽  
Author(s):  
David J. Hearse ◽  
Fiona J. Sutherland

The aims of this study were to determine whether 1) like ischemic preconditioning, transient exposure to norepinephrine before ischemia exacerbates contracture during ischemia and 2) protection afforded by norepinephrine is stereospecific (receptor mediated). Isolated perfused rat hearts were randomized into five groups ( n = 6/group): 1) ischemic preconditioning (3 min of ischemia + 3 min of reperfusion + 5 min of ischemia + 5 min of reperfusion), 2) untreated control, 3) vehicle control (ascorbic acid), 4) substitution of preconditioning ischemia by perfusion with d-norepinephrine, and 5) substitution of preconditioning ischemia by perfusion with l-norepinephrine. This was followed by 40 min of zero-flow ischemia and 50 min of reperfusion. Ischemic preconditioning and l-norepinephrine exacerbated contracture (time to 50% contracture = 9.2 ± 1.1 and 9.0 ± 1.1 vs. 13.3 ± 0.3, 12.4 ± 0.5, and 13.2 ± 0.4 min for untreated control, vehicle control, and d-norepinephrine, respectively, P < 0.05). Postischemic left ventricular developed pressure was poor in untreated control (23.0 ± 2.2%), vehicle control (26.9 ± 2.3%), and d-norepinephrine (19.8 ± 2.8%) groups but good in preconditioned (52.4 ± 5.1%) and l-norepinephrine (52.5 ± 1.1%) groups ( P < 0.05). Thus norepinephrine preconditioning, like ischemic preconditioning, causes a paradoxical exacerbation of contracture coupled with enhanced postischemic recovery; both effects are stereospecific.


1991 ◽  
Vol 260 (1) ◽  
pp. H6-H12 ◽  
Author(s):  
S. M. Humphrey ◽  
P. B. Garlick

Nuclear magnetic resonance (NMR) spectroscopy detects only free, unbound metabolites. We have therefore compared the free high-energy phosphate content of isolated perfused rat hearts (determined by 31P-NMR) with the total high-energy phosphates of the same hearts (determined by chemical analysis) to determine the fractions, if any, that are NMR invisible. Aerobic perfusion (40 min at 37 degrees C, Pi-free Krebs buffer) was followed by 10, 14, or 18 min total global ischemia and 30 min reperfusion (n = 6 in each group). Fully relaxed 31P-NMR spectra (40 scans using 90 degrees pulses at 15-s intervals) were collected at various times throughout the protocol, and the signal intensities of the beta-phosphate of ATP, phosphocreatine (PCr), and Pi were quantified using methylenediphosphonate as an external standard. Hearts were freeze clamped either before ischemia or at the end of reperfusion and were chemically assayed for ATP, PCr, and Pi. After 40 min of normoxia, the ATP and PCr contents determined by NMR were almost identical to the values determined by chemical analysis. However, only 39 +/- 8% of the total Pi was NMR visible. After reperfusion, after 14 or 18 min of ischemia, the proportion of NMR-visible ATP had decreased to 64 +/- 9% (P less than 0.005). After reperfusion after 18 min ischemia, the proportion of NMR-visible Pi had increased to 76 +/- 10% (P less than 0.05). In conclusion, whereas the total cellular content of PCr is always NMR visible, ischemia-reperfusion can alter the fraction of NMR-visible ATP and Pi.


2012 ◽  
pp. S33-S41 ◽  
Author(s):  
T. RAJTÍK ◽  
S. ČARNICKÁ ◽  
A. SZOBI ◽  
L. MESÁROŠOVÁ ◽  
M. MÁŤUŠ ◽  
...  

Although statins exert non-lipid cardioprotective effects, their influence on cell death is not fully elucidated. For this purpose, we investigated whether simvastatin treatment (S, 10 mg/kg, 5 days) is capable of mitigating ischemia/reperfusion-induced (IR) apoptosis in the isolated rat hearts, which was examined using immunoblotting analysis. In addition, the content of signal transducer and activator of transcription 3 (STAT3) and its active form, phosphorylated STAT3 (pSTAT3-Thr705), was analyzed. Simvastatin induced neither variations in the plasma lipid levels nor alterations in the baseline content of analysed proteins with the exception of upregulation of cytochrome C. Furthermore, simvastatin significantly increased the baseline levels of pSTAT3 in contrast to the control group. In the IR hearts, simvastatin reduced the expression of Bax and non-cleaved caspase-3. In these hearts, phosphorylation of STAT3 did not differ in comparison to the non-treated IR group, however total STAT3 content was slightly increased. The improved recovery of left ventricular developed pressure co-existed with the increased Bcl-2/Bax ratio. In conclusion, pleiotropic action of statins may ameliorate viability of cardiomyocytes by favouring the expression of anti-apoptotic Bcl-2 and downregulating the pro-apoptotic markers; however STAT3 does not seem to be a dominant regulator of this anti-apoptotic action of simvastatin.


Sign in / Sign up

Export Citation Format

Share Document