scholarly journals Local Injection of Hydroxyapatite Electret Ameliorated Infarct Size After Myocardial Infarction

Author(s):  
Junji Yamaguchi ◽  
Risako Chiba ◽  
Hiroaki Komuro ◽  
Kensuke Ihara ◽  
Kosuke Nozaki ◽  
...  
1999 ◽  
Vol 82 (S 01) ◽  
pp. 68-72 ◽  
Author(s):  
Alessandro Sciahbasi ◽  
Eugenia De Marco ◽  
Attilio Maseri ◽  
Felicita Andreotti

SummaryPreinfarction angina and early reperfusion of the infarct-related artery are major determinants of reduced infarct-size in patients with acute myocardial infarction. The beneficial effects of preinfarction angina on infarct size have been attributed to the development of collateral vessels and/or to post-ischemic myocardial protection. However, recently, a relation has been found between prodromal angina, faster coronary recanalization, and smaller infarcts in patients treated with rt-PA: those with preinfarction angina showed earlier reperfusion (p = 0.006) and a 50% reduction of CKMB-estimated infarct-size (p = 0.009) compared to patients without preinfarction angina. This intriguing observation is consistent with a subsequent observation of higher coronary recanalization rates following thrombolysis in patients with prodromal preinfarction angina compared to patients without antecedent angina. Recent findings in dogs show an enhanced spontaneous lysis of plateletrich coronary thrombi with ischemic preconditioning, which is prevented by adenosine blockade, suggesting an antithrom-botic effect of ischemic metabolites. Understanding the mechanisms responsible for earlier and enhanced coronary recanalization in patients with preinfarction angina may open the way to new reperfusion strategies.A vast number of studies, globally involving ≈17,000 patients with acute myocardial infarction, have unequivocally shown that an infarction preceded by angina evolves into a smaller area of necrosis compared to an infarct not preceded by angina (Table 1) (1). So far, preinfarction angina has been thought to have cardioprotective effects mainly through two mechanisms: collateral perfusion of the infarctzone (2-4), and ischemic preconditioning of the myocardium (5-7). Here we discuss a further mechanism of protection represented by improved reperfusion of the infarct-related artery.


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Yongle Sun ◽  
Jing Geng ◽  
Deyu Wang

Aging is the crucial co-morbidity that prevents the full cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Combination therapy as a promising strategy may overcome this clinical problem. This study aimed to investigate the cardioprotective effects of Ginsenoside compound-Mc1 (GMc1) and Dendrobium Nobile Lindl (DNL) in myocardial I/R injury and explore the involvement of the TLR4/NF-κB signaling pathway in aged rats. In vivo I/R injury and myocardial infarction was established by temporary coronary ligation in 22–24 months’ old Sprague Dawley male rats. GMc1 (10 mg/kg) and DNL (80 mg/kg) were administered intraperitoneally for 4 weeks and orally for 14 days, respectively, before I/R injury. Infarct size was measured through triphenyl-tetrazolium-chloride staining. ELISA assay was conducted to quantify the levels of cardiotroponin, and myocardial content of TNF-α and glutathione. Western blotting was employed to detect the expression of TLR4/MyD88/NF-κB proteins. GMc1 and DNL significantly reduced the infarct size to a similar extent ( p < 0.05) but their combined effect was greater than individual ones ( p < 0.01). Combination therapy significantly restored the left ventricular end-diastolic and developed pressures at the end of reperfusion as compared with the untreated group ( p < 0.01). Although the GMc1 and DNL reduced the levels of inflammatory cytokine TNF-α and increased the contents of antioxidant glutathione significantly, their individual effects on the reduction of protein expression of TLR4/MyD88/NF-κB pathway were not consistent. However, their combination could significantly reduce all parameters of this inflammatory pathway as compared to untreated I/R rats ( p < 0.001). Therefore, the combined treatment with GMc1 and DNL increased the potency of each intervention in protecting the aged hearts against I/R injury. Reduction in the activity of the TLR4/MyD88/NF-κB signaling pathway and subsequent modulation of the activity of inflammatory cytokines and endogenous antioxidants play an important role in this cardioprotection.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Marcos Garces ◽  
C Rios-Navarro ◽  
L Hueso ◽  
A Diaz ◽  
C Bonanad ◽  
...  

Abstract Background Angiogenesis participates in re-establishing microcirculation after myocardial infarction (MI). Purpose In this study, we aim to further understand the role of the anti-angiogenic isoform vascular endothelial growth factor (VEGF)-A165b after MI and explore its potential as a co-adjuvant therapy to coronary reperfusion. Methods Two mice MI models were formed: 1) permanent coronary ligation (non-reperfused MI), 2) transient 45-min coronary occlusion followed by reperfusion (reperfused MI); in both models, animals underwent echocardiography before euthanasia at day 21 after MI induction. Serum and myocardial VEGF-A165b levels were determined. In both experimental MI models, functional and structural implication of VEGF-A165b blockade was assessed. In a cohort of 104 ST-segment elevation MI patients, circulating VEGF-A165b levels were correlated with cardiovascular magnetic resonance-derived left ventricular ejection fraction at 6-months and with the occurrence of adverse events (death, heart failure and/or re-infarction). Results In both models, circulating and myocardial VEGF-A165b presence was increased 21 days after MI induction. Serum VEGF-A165b levels inversely correlated with systolic function evaluated by echocardiography. VEGF-A165b blockage increased capillary density, reduced infarct size, and enhanced left ventricular function in reperfused, but not in non-reperfused MI experiments. In patients, higher VEGF-A165b levels correlated with depressed ejection fraction and worse outcomes. Conclusions In experimental and clinical studies, higher serum VEGF-A165b levels associates with a worse systolic function. Its blockage enhances neoangiogenesis, reduces infarct size, and increases ejection fraction in reperfused, but not in non-reperfused MI experiments. Therefore, VEGF-A165b neutralization represents a potential co-adjuvant therapy to coronary reperfusion. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” (Exp. PIE15/00013, PI17/01836, PI18/00209 and CIBERCV16/11/00486).


2020 ◽  
Vol 29 ◽  
pp. S280
Author(s):  
C. Said ◽  
A. Bland ◽  
S. Casinader ◽  
M. Parkinson ◽  
P. Bamford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document