scholarly journals Role of Mammalian Formin Fhod3 in Neural Tube Closure

Author(s):  
Hikmawan W Sulistomo ◽  
Yohko Kage ◽  
Takayuki Nemoto ◽  
Ryu Takeya
2020 ◽  
Author(s):  
Tim Pieters ◽  
Ellen Sanders ◽  
Huiyu Tian ◽  
Jolanda van Hengel ◽  
Frans Van Roy

Abstract Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported.Results We used Cre/loxP technology to achieve full or tissue-specific deletion of p120ctn in the developing embryo. We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could recapitulate neurogenesis and partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin.Conclusions These results indicate that p120ctn is strictly required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.


2018 ◽  
Vol 6 (3) ◽  
pp. 22 ◽  
Author(s):  
Diana Juriloff ◽  
Muriel Harris

The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.


Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 4742-4752 ◽  
Author(s):  
Femke Zwerts ◽  
Florea Lupu ◽  
Astrid De Vriese ◽  
Saskia Pollefeyt ◽  
Lieve Moons ◽  
...  

Abstract We explored the physiologic role of endothelial cell apoptosis during development by generating mouse embryos lacking the inhibitor of apoptosis protein (IAP) survivin in endothelium. This was accomplished by intercrossing survivinlox/lox mice with mice expressing cre recombinase under the control of the endothelial cell specific tie1 promoter (tie1-cre mice). Lack of endothelial cell survivin resulted in embryonic lethality. Mutant embryos had prominent and diffuse hemorrhages from embryonic day 9.5 (E9.5) and died before E13.5. Heart development was strikingly abnormal. Survivin-null endocardial lineage cells could not support normal epithelial-mesenchymal transformation (EMT), resulting in hypoplastic endocardial cushions and in utero heart failure. In addition, 30% of mutant embryos had neural tube closure defects (NTDs) that were not caused by bleeding or growth retardation, but were likely due to alterations in the release of soluble factors from endothelial cells that otherwise support neural stem cell proliferation and neurulation. Thus, regulation of endothelial cell survival, and maintenance of vascular integrity by survivin are crucial for normal embryonic angiogenesis, cardiogenesis, and neurogenesis.


Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 333-348
Author(s):  
Gillian Morriss-Kay ◽  
Fiona Tuckett

During the late stages of cranial neurulation in mammalian embryos, the neural epithelium becomes concave. A thick subapical band of microfilament bundles, attached to junctions which are both vertical and horizontal in orientation, can be seen by TEM. Prior to this the neural epithelium is first biconvex and then V-shaped in transverse section, microfilament bundles are absent, and the subapical junctions are only vertical in orientation. In order to determine the role of microfilaments in cranial neurulation, rat embryos were exposed to cytochalasin D (0·15 μg ml−1) for lh at three stages of development: convex neural fold stage, early concave (prior to midline apposition at the forebrain/midbrain junction: ‘preapposition’) and later concave (‘postapposition’). They were subsequently washed and cultured in addition-free medium for 5,12, 24 or 36h, then examined alive and by LM, TEM, or SEM. The degree of neural fold collapse varied with the stage of development: at the convex stage there was only slight opening out of the neural groove; early concave (preapposition) neural folds collapsed laterally to a horizontal position; later concave (postapposition) neural folds showed widening of the midbrain/hindbrain neuropore and slight neuroepithelial eversion at the anterior neuropore. Neural epithelium which had been concave prior to cytochalasin D treatment changed in structure so that the cells were broader and shorter; most of the subapical junctions were vertical in orientation, and microfilament bundles were represented either as a mass of amorphous material adjacent to the junctions, or as separated and broken filaments. Re-elevation of neural folds in ‘recovery’ cultures was accompanied by regeneration of apical microfilament bundles and horizontal junctions. Embryos which had been exposed to cytochalasin D at the convex or later concave stage of cranial neural fold development were able to complete cranial neural tube closure; none of the early-concave-stage embryos achieved apposition at the forebrain/midbrain junction, and all had major cranial neural tube defects. The results suggest that contraction of apical microfilament bundles plays an essential role in elevation of the neural folds and in the generation of concave curvature during the later stages of cranial neurulation. During the convex neural fold stage, microfilaments are important in maintaining neuroepithelial apposition in the neural groove, but are not crucial to maintenance of the convex shape. Successful formation and maintenance of the forebrain/midbrain apposition point at the appropriate time is considered to be essential for subsequent brain tube closure.


2020 ◽  
Author(s):  
Tim Pieters ◽  
Ellen Sanders ◽  
Huiyu Tian ◽  
Jolanda van Hengel ◽  
Frans Van Roy

Abstract Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. Results We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctn fl/fl ;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin. Conclusions These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document