How Can We Unravel Complicated near Infrared Spectra?—Recent Progress in Spectral Analysis Methods for Resolution Enhancement and Band Assignments in the near Infrared Region

2001 ◽  
Vol 9 (2) ◽  
pp. 63-95 ◽  
Author(s):  
Yukihiro Ozaki ◽  
Slobodan Šašić ◽  
Jian Hui Jiang

This review paper reports recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared (NIR) region. Spectra in the NIR region are inherently rich with information on the physical and chemical properties of molecules. However, it is not always straightforward to analyse the spectra because an NIR spectrum consists of a number of overlapped bands due to overtones and combination modes. An NIR spectrum may be analysed by conventional spectral analysis methods, chemometrics or two-dimensional correlation spectroscopy. The following conventional methods are currently utilised to analyse NIR spectra: (a) derivatives, (b) difference spectroscopy, (c) Fourier self-deconvolution and (d) curve fitting. The derivative method is powerful in separating superimposed bands and correcting for a baseline slope. Conventional experimental methods for spectral analysis, such as isotope exchange and measurement of polarisation spectra, are also valid in the NIR region. Chemometrics is very useful for extracting information from NIR spectra. Among a variety of chemometrics methods, multiple linear regression, principal component analysis, principal component regression and partial least squares regression are most often used for qualitative and quantitative analysis. Recently, chemometrics has been used for resolution enhancement of NIR spectra. Particularly, loadings plots or regression coefficients are useful for separating overlapped bands and for making band assignments. Notable recent advances in the analysis of NIR spectroscopy are the development or introduction of new spectral analysis methods such as two-dimensional (2D) correlation spectroscopy and self-modelling curve resolution methods (SMCR). 2D correlation analysis enables enhancement of apparent spectral resolution by spreading spectral peaks over a second dimension. SMCR allows one to resolve the experimental matrix into concentration profiles and pure spectra of the involved species without prior knowledge of any of these features.

1998 ◽  
Vol 52 (7) ◽  
pp. 994-1000 ◽  
Author(s):  
Mirosław A. Czarnecki ◽  
Hisashi Maeda ◽  
Yukihiro Ozaki ◽  
Masao Suzuki ◽  
Makio Iwahashi

The first paper in a series devoted to self-association in neat butanols presents the results of two-dimensional (2D) near-infrared (NIR) correlation analysis of temperature-induced spectral variations of sec-butanol. By taking advantage of resolution enhancement in the 2D correlation spectra, it was possible to identify spectral features due to vibrations of the free and associated OH groups in the first-overtone region. On the basis of a few assumptions, band assignments of the various types of OH bonds have been proposed. The monomer band (near 7100 cm−1) can be resolved into three components; two of them are due to a rotational isomerism (7089 and 7116 cm−1), and the third one is attributed to the free terminal OH groups in linear polymers (7055 cm−1). The presence of the 7055 cm−1 band implies that the intensity of the monomer peak cannot be used as a measure of the concentration of the monomer species (except in very diluted solutions). Thus, previous estimations of equilibrium constants and thermodynamic parameters associated with hydrogen-bond dissociation have been subject to unacceptable error. At higher temperatures, a new band near 6550 cm−1 becomes visible. This band originates from bended OHO bond, mostly in the cyclic polymers. In order to obtain more detailed information on the complex mechanism of the thermal dissociation of hydrogen-bonded sec-butanol in the pure liquid phase, the entire experimental temperature range was divided into narrower ranges, and then 2D correlation analysis was performed for smaller data sets. It has been shown that the variations of population of the polymeric species and the cyclic dimers are faster than the corresponding changes for the monomers. At elevated temperatures an appreciable dissociation of the cyclic species takes place.


Sign in / Sign up

Export Citation Format

Share Document