A review of the need and possible uses for genetically standardized Atlantic salmon (Salmo salar) in research

2009 ◽  
Vol 43 (2) ◽  
pp. 121-126 ◽  
Author(s):  
U Grimholt ◽  
R Johansen ◽  
A J Smith

Large numbers of Atlantic salmon ( Salmo salar) are used as research animals in basic research and to solve challenges related to the fish-farming industry. Most of this research is performed on farmed animals provided by local breeders or national breeding companies. The genetic constitution of these animals is usually unknown and highly variable. As a result, large numbers of fish are often needed to produce significant results, and results from one study are often impossible to reproduce in another facility. The production of standardized salmon could in many cases reduce the number of animals used in research and at the same time provide more reproducible results. This paper provides an overview of the methods available for the production of standardized Atlantic salmon, and discusses the pros and cons of each technique. The use of zebrafish and other well-defined laboratory fish species as a model for salmon is also discussed. Access to genetically defined fish would greatly benefit the scientific community, in the same way as genetically defined lines of rodents have revolutionized mammalian research.

2006 ◽  
Vol 63 (7) ◽  
pp. 1201-1210 ◽  
Author(s):  
Alan M. Walker ◽  
Malcolm C.M. Beveridge ◽  
Walter Crozier ◽  
Niall Ó Maoiléidigh ◽  
Nigel Milner

Abstract An inevitable consequence of the development of the Atlantic salmon, Salmo salar L., farming industry in coastal waters of the British Isles has been the loss of farmed salmon to the wild, their occurrence in inshore waters and rivers, and their appearance in coastal and freshwater fisheries. Monitoring programmes have been developed throughout the British Isles, variously using scientific sampling, catch records from coastal or freshwater fisheries or both, and scientific sampling of catches from in-river traps. We compare the results of these monitoring programmes with regional production and the numbers of escapees reported from marine fish farms. We also consider the effectiveness of the programmes for assessing the prevalence of farmed salmon that escape from marine cages. Finally, we make recommendations for improvements to these programmes and for the development of best practice, including the scientific sampling of in-river spawning stocks through fishery-independent sources, identification of fish origin based on at least two methods, assessment of the degree of incorrect classification, and the timely and accurate reporting of all escapes.


1989 ◽  
Vol 46 (3) ◽  
pp. 406-409 ◽  
Author(s):  
Jukka Vuorinen ◽  
Ole Kristian Berg

Anadromous and nonanadromous Atlantic salmon, Salmo salar, coexist in the River Namsen in Norway. We studied genetic divergence between these two life history types by using electrophoretic data from 38 protein loci. Although allele frequencies differed significantly between the types at four loci no fixed allele frequency difference was observed. Nei's genetic distance between the life history types, however, was 0.01 a relatively high value for Atlantic salmon populations. The genetic differences observed between anadromous and nonanadromous salmon accounted for 18.3% of the total gene diversity. The five nonanadromous salmon samples formed two genetically different groups corresponding to the upper and lower ranges of the nonanadromous salmon in the river. The average observed heterozygosity was 3.1% for anadromous and 1.0% for nonanadromous salmon. The low heterozygosity in nonanadromous salmon probably reflects a strong founder effect. Stockings of large numbers of anadromous salmon fry to the upper reaches of the River Namsen have caused no detectable hybridization with nonanadromous salmon. Also downstream migrating nonanadromous salmon have apparently not made any important genetic contribution to the anadromous fish.


2021 ◽  
Author(s):  
Patricia Rivera ◽  
José Gallardo ◽  
Cristian Araneda ◽  
Anti Vasemägi

The sexual maturation of Atlantic salmon Salmo salar is a multifactorial process in which fish acquire somatic characteristics to reproduce. In salmon farming has been described a high variability in the trait age at maturation derived from wild reproductive strategies. Early maturation is a phenotype that generates serious economic repercussions on both, sea cage and on land-based aquaculture systems. In view of the challenges of this problem for the global salmon farming industry, it is essential to thoroughly understand the influencing factors of early and late maturation to find efficient alternatives for managing the phenomenon. This review briefly describes sexual maturation in S. salar, its variability in cultures, and the factors influencing the maturation age trait at the physiological, genetic and environmental levels. The control of early maturity through changes to the natural photoperiod and through the use of genetic markers are discussed.


2001 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sjofn Sigurgisladottir ◽  
Margret S. Sigurdardottir ◽  
Helga Ingvarsdottir ◽  
Ole J. Torrissen ◽  
Hannes Hafsteinsson

2005 ◽  
Vol 68 (7) ◽  
pp. 1336-1339 ◽  
Author(s):  
L. L. NESSE ◽  
T. LØVOLD ◽  
B. BERGSJØ ◽  
K. NORDBY ◽  
C. WALLACE ◽  
...  

The objective of our experiments was to study the persistence and dissemination of orally administered Salmonella in smoltified Atlantic salmon. In experiment 1, salmon kept at 15°C were fed for 1 week with feed contaminated with 96 most-probable-number units of Salmonella Agona per 100 g of feed and then starved for 2 weeks. Samples were taken from the gastrointestinal tract and examined for Salmonella 1, 2, 8, 9, 15, and 16 days after the feeding ended. In experiment 2, Salmonella Agona and Montevideo were separately mixed with feed and administered by gastric intubation. Each fish received 1.0 × 108, 1.0 × 106, or 1.0 × 104 CFU. The different groups were kept in parallel at 5 and 15°C and observed for 4 weeks. Every week, three fish in each group were sacrificed, and samples were taken from the skin, the pooled internal organs, the muscle, and the gastrointestinal tract and examined for the presence of Salmonella. The results from the two experiments showed that the persistence of Salmonella in the fish was highly dependent on the dose administered. Salmonella was not recovered from any of the fish that were fed for 1 week with the lowest concentration of Salmonella. In the fish given the highest dose of Salmonella, bacteria persisted for at least 4 weeks in the gastrointestinal tract as well as, to some extent, the internal organs. The present study shows that under practical conditions in Norway, the risk of Salmonella in fish feed being passed on to the consumer of the fish is negligible.


Sign in / Sign up

Export Citation Format

Share Document