Feeding activity and opercular pressure transients in Atlantic salmon (Salmo salar L.): application to feeding management in fish farming

Hydrobiologia ◽  
2007 ◽  
Vol 582 (1) ◽  
pp. 199-207 ◽  
Author(s):  
Jo Arve Alfredsen ◽  
Bård Holand ◽  
Torfinn Solvang-Garten ◽  
Ingebrigt Uglem
2009 ◽  
Vol 43 (2) ◽  
pp. 121-126 ◽  
Author(s):  
U Grimholt ◽  
R Johansen ◽  
A J Smith

Large numbers of Atlantic salmon ( Salmo salar) are used as research animals in basic research and to solve challenges related to the fish-farming industry. Most of this research is performed on farmed animals provided by local breeders or national breeding companies. The genetic constitution of these animals is usually unknown and highly variable. As a result, large numbers of fish are often needed to produce significant results, and results from one study are often impossible to reproduce in another facility. The production of standardized salmon could in many cases reduce the number of animals used in research and at the same time provide more reproducible results. This paper provides an overview of the methods available for the production of standardized Atlantic salmon, and discusses the pros and cons of each technique. The use of zebrafish and other well-defined laboratory fish species as a model for salmon is also discussed. Access to genetically defined fish would greatly benefit the scientific community, in the same way as genetically defined lines of rodents have revolutionized mammalian research.


2011 ◽  
Vol 68 (8) ◽  
pp. 1470-1479 ◽  
Author(s):  
Helge Skoglund ◽  
Sigurd Einum ◽  
Torbjørn Forseth ◽  
Bjørn Torgeir Barlaup

Successful transitions from relying on yolk to exogenous feeding may be strongly influenced by temperature conditions experienced both during embryonic development, through effects on juvenile phenotype, and during initiation of feeding. Here we simultaneously assess these two effects of temperature treatments (2, 5, 8, and 12 °C) in Atlantic salmon ( Salmo salar ). Fry emerging from low incubation temperatures were smaller and had metabolized more energy prior to emergence, but had larger yolk sacs and higher mass specific energy levels, than those experiencing higher temperatures. After emergence, activity, feeding, and growth increased significantly with increasing temperature, but fry were able to initiate feeding and maintain positive growth at all four temperatures. Larger energy stores may provide an advantage when emerging at cold temperatures with a low potential for feeding activity, whereas having a large body size, which is primarily of importance in competitive interactions, may be less important owing to cryptic feeding and sheltering at low temperatures. However, the adaptive significance of the observed phenotypic response to incubation temperature remains untested.


2001 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sjofn Sigurgisladottir ◽  
Margret S. Sigurdardottir ◽  
Helga Ingvarsdottir ◽  
Ole J. Torrissen ◽  
Hannes Hafsteinsson

2005 ◽  
Vol 68 (7) ◽  
pp. 1336-1339 ◽  
Author(s):  
L. L. NESSE ◽  
T. LØVOLD ◽  
B. BERGSJØ ◽  
K. NORDBY ◽  
C. WALLACE ◽  
...  

The objective of our experiments was to study the persistence and dissemination of orally administered Salmonella in smoltified Atlantic salmon. In experiment 1, salmon kept at 15°C were fed for 1 week with feed contaminated with 96 most-probable-number units of Salmonella Agona per 100 g of feed and then starved for 2 weeks. Samples were taken from the gastrointestinal tract and examined for Salmonella 1, 2, 8, 9, 15, and 16 days after the feeding ended. In experiment 2, Salmonella Agona and Montevideo were separately mixed with feed and administered by gastric intubation. Each fish received 1.0 × 108, 1.0 × 106, or 1.0 × 104 CFU. The different groups were kept in parallel at 5 and 15°C and observed for 4 weeks. Every week, three fish in each group were sacrificed, and samples were taken from the skin, the pooled internal organs, the muscle, and the gastrointestinal tract and examined for the presence of Salmonella. The results from the two experiments showed that the persistence of Salmonella in the fish was highly dependent on the dose administered. Salmonella was not recovered from any of the fish that were fed for 1 week with the lowest concentration of Salmonella. In the fish given the highest dose of Salmonella, bacteria persisted for at least 4 weeks in the gastrointestinal tract as well as, to some extent, the internal organs. The present study shows that under practical conditions in Norway, the risk of Salmonella in fish feed being passed on to the consumer of the fish is negligible.


Sign in / Sign up

Export Citation Format

Share Document