Book reviewsRecommendations on Limits for Exposure to Ionizing Radiation, NCRP Report no. 91, pp. viii + 72, 1987 (National Council on Radiation Protection and Measurements, Bethesda), $11.00. ISBN 0–913392–89–8

1988 ◽  
Vol 61 (730) ◽  
pp. 983-984
Author(s):  
D. J. Rawlings
Author(s):  
Srikanth Nayak ◽  
Arivudai Nambi ◽  
Sathish Kumar ◽  
P Hariprakash ◽  
Pradeep Yuvaraj ◽  
...  

AbstractNumerous studies have documented the adverse effects of high-dose radiation on hearing in patients. On the other hand, radiographers are exposed to a low dose of ionizing radiation, and the effect of a low dose of radiation on hearing is quite abstruse. Therefore, the present systematic review aimed to elucidate the effect of low-dose ionizing radiation on hearing. Two authors independently carried out a comprehensive data search in three electronic databases, including PUBMED/MEDLINE, CINAHL, and SCOPUS. Eligible articles were independently assessed for quality by two authors. Cochrane Risk of Bias tool was used assess quality of the included studies. Two articles met the low-dose radiation exposure criteria given by Atomic Energy Regulatory Board (AERB) and National Council on Radiation Protection (NCRP) guidelines. Both studies observed the behavioral symptoms, pure-tone hearing sensitivity at the standard, extended high frequencies, and the middle ear functioning in low-dose radiation-exposed individuals and compared with age and gender-matched controls. One study assessed the cochlear function using transient-evoked otoacoustic emissions (TEOAE). Both studies reported that behavioral symptoms of auditory dysfunction and hearing thresholds at extended high frequencies were higher in radiation-exposed individuals than in the controls. The current systematic review concludes that the low-dose ionizing radiation may affect the hearing adversely. Nevertheless, further studies with robust research design are required to explicate the cause and effect relationship between the occupational low-dose ionizing radiation exposure and hearing.


2021 ◽  
Author(s):  
Sanggam Ramantisan ◽  
◽  
Siti Akbari Pandaningrum ◽  
Suwardi Suwardi ◽  
Syarifudin Syarifudin ◽  
...  

Ionizing radiation safety in the medical field, referred to as radiation safety, is an action taken to protect patients, workers, community members, and the environment from the dangers of radiation. One of the efforts to achieve this is by increasing the qualifications of radiation workers in understanding and implementing radiation protection and safety through ionizing radiation safety and security training initiated by the Radiation Protection Officer (PPR) team at Dr. RSUP. Kariadi Semarang. During the current pandemic, implemented the training by modifying what was previously done using face-to-face and field practice into online delivery of material and making videos as a substitute for field practice. As a result, these activities can run well and smoothly. The impression from the training participants stated that this training was beneficial and should be done regularly. Keywords: training, ionizing radiation, radiation protection officer


2013 ◽  
Vol 4 (1) ◽  
pp. 29-42
Author(s):  
Gabriel Doménech Pascual

Private scientific organizations exert a great deal of influence in the regulation of some technological risks. The high level of expertise of their members is arguably a good reason for them to participate in making and monitoring risk regulations, in order to adjust these to scientific progress. Nevertheless, there are also sound reasons why governments shouldn’t uncritically follow the views expressed by such organizations. Taking the role played by the International Commission on Non–Ionizing Radiation Protection in the regulation of electromagnetic fields as an illustrative example, this paper shows that private scientific organizations such as these are structurally less well suited than democratic authorities when it comes to managing those risks.


Author(s):  
Nataliya Uzlenkova

The review systematized the current data on new classes of pharmacological compounds and biologically active substances in the field of radiation protection in Ukraine, as well as abroad. Methodological approaches and the importance of using appropriate animal models in the development of new pharmacological drugs for radiation protection are described, specifically in the cases when it is impossible to conduct full clinical trials on patients. Current views on the division of pharmacological agents into radioprotectors, radiomitigators, and therapeutic radiation protection agents are examined. The changes in the hematopoietic tissue, gastrointestinal tract and neurovascular system that occur after acute radiation exposure are also described. Particular attention is paid to pharmacological agents that can protect against acute exposure to ionizing radiation by limiting the risk of radiation mortality from the hematological and gastrointestinal forms of radiation syndrome. Results of the effectiveness of tolerant antioxidants with a wide spectrum of biological activity as promising agents for the prevention of acute and delayed radiation-induced pathology, in particular, in lung tissue, are presented. Possible molecular mechanisms of the radioprotective effect of pharmacological compounds on experimental models of total and local radiation exposure are discussed. The effectiveness of the therapeutic use of growth factors and recombinant cytokines in acute bone marrow suppression аfter accidental radiation exposure is shown. The possibilities of cell therapy with myeloid progenitor cells mobilized by tocopherol succinate hematopoietic/progenitor cells and bone marrow mesenchymal stromal cells in acute radiation injuries are shown. Special attention is paid to the importance of improving such methodological approaches and regulatory requirements when introducing into practice new radiation protection facilities in Ukraine. Key words: radiation protection, ionizing radiation, pharmacological agents, acute radiation syndrome. For citation: Uzlenkova NE. New pharmacological means of radiation protection (literature review). Journal of the National Academy of Medical Sciences of Ukraine. 2019;25(3) :268–77


Sign in / Sign up

Export Citation Format

Share Document