scholarly journals The histogram analysis of apparent diffusion coefficient in differential diagnosis of parotid tumor

2020 ◽  
Vol 49 (5) ◽  
pp. 20190420 ◽  
Author(s):  
Peiqian Chen ◽  
Bing Dong ◽  
Chunye Zhang ◽  
Xiaofeng Tao ◽  
Pingzhong Wang ◽  
...  

Objectives: Use apparent diffusion coefficient (ADC) histogram to investigate whether the parameters of ADC histogram can distinguish between benign and malignant tumors and further differentiate the tumor subgroups. Methods and materials: This study retrospectively enrolls 161 patients with parotid gland tumors. Histogram parameters including mean, inhomogeneity, skewness, kurtosis and 10th, 25th, 50th, 75th, 90th percentiles are derived from ADC mono-exponential model. Mann–Whitney U test is used to compare the differences between benign and malignant groups. Kruskal–Wallis test with post-hoc Dunn–Bonferroni method is used for subgroup classification, then receiver operating characteristic curve analysis is performed in mean ADC value to obtain the appropriate cutoff values. Results: Except for kurtosis and 90th percentile, there are significant differences in all other ADC parameters between benign and malignant groups. In subgroup classification of benign tumors, there are significant differences in all ADC parameters between pleomorphic adenoma and Warthin’s tumor (area under curve 0.988; sensitivity 93.8%; specificity 94.7%; all ps < 0.05). Pleomorphic adenoma has high value in mean than basal cell adenoma (area under curve 0.819; sensitivity 76.9%; specificity 76.9%; p < 0.05). Basal cell adenoma has high values in mean (area under curve 0.897; sensitivity 92.3%; specificity 78.9%; all ps < 0.05) and 10th, 25th, 50th percentiles than Warthin’s tumor. In subgroup classification of malignant tumors, low-risk parotid carcinomas have higher values than hematolymphoid tumors in mean (area under curve 0.912; sensitivity 84.6%; specificity 100%, all ps < 0.05) and 10th, 25th percentiles. Conclusion: ADC histogram parameters, especially mean and 10th, 25th percentiles, can potentially be an effective indicator for identifying and classifying parotid tumors.

Author(s):  
Meysam Haghighi Borujeini ◽  
Masoume Farsizaban ◽  
Shiva Rahbar Yazdi ◽  
Alaba Tolulope Agbele ◽  
Gholamreza Ataei ◽  
...  

Abstract Background Our purpose was to evaluate the application of volumetric histogram parameters obtained from conventional MRI and apparent diffusion coefficient (ADC) images for grading the meningioma tumors. Results Tumor volumetric histograms of preoperative MRI images from 45 patients with the diagnosis of meningioma at different grades were analyzed to find the histogram parameters. Kruskal-Wallis statistical test was used for comparison between the parameters obtained from different grades. Multi-parametric regression analysis was used to find the model and parameters with high predictive value for the classification of meningioma. Mode; standard deviation on post-contrast T1WI, T2-FLAIR, and ADC images; kurtosis on post-contrast T1WI and T2-FLAIR images; mean and several percentile values on ADC; and post-contrast T1WI images showed significant differences among different tumor grades (P < 0.05). The multi-parametric linear regression showed that the ADC histogram parameters model had a higher predictive value, with cutoff values of 0.212 (sensitivity = 79.6%, specificity = 84.3%) and 0.180 (sensitivity = 70.9%, specificity = 80.8%) for differentiating the grade I from II, and grade II from III, respectively. Conclusions The multi-parametric model of volumetric histogram parameters in some of the conventional MRI series (i.e., post-contrast T1WI and T2-FLAIR images) along with the ADC images are appropriate for predicting the meningioma tumors’ grade.


Author(s):  
Chen Chen ◽  
Yuhui Qin ◽  
Haotian Chen ◽  
Junying Cheng ◽  
Bo He ◽  
...  

Abstract Objective We used radiomics feature–based machine learning classifiers of apparent diffusion coefficient (ADC) maps to differentiate small round cell malignant tumors (SRCMTs) and non-SRCMTs of the nasal and paranasal sinuses. Materials A total of 267 features were extracted from each region of interest (ROI). Datasets were randomized into two sets, a training set (∼70%) and a test set (∼30%). We performed dimensional reductions using the Pearson correlation coefficient and feature selection analyses (analysis of variance [ANOVA], relief, recursive feature elimination [RFE]) and classifications using 10 machine learning classifiers. Results were evaluated with a leave-one-out cross-validation analysis. Results We compared the AUC for all the pipelines in the validation dataset using FeAture Explorer (FAE) software. The pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUCs with ten features. When the “one-standard error” rule was used, FAE produced a simpler model with eight features, including Perc.01%, Perc.10%, Perc.90%, Perc.99%, S(1,0) SumAverg, S(5,5) AngScMom, S(5,5) Correlat, and WavEnLH_s-2. The AUCs of the training, validation, and test datasets achieved 0.995, 0.902, and 0.710, respectively. For ANOVA, the pipeline with the auto-encoder classifier yielded the highest AUC using only one feature, Perc.10% (training/validation/test datasets: 0.886/0.895/0.809, respectively). For the relief, the AUCs of the training, validation, and test datasets that used the LRLasso classifier using five features (Perc.01%, Perc.10%, S(4,4) Correlat, S(5,0) SumAverg, S(5,0) Contrast) were 0.892, 0.886, and 0.787, respectively. Compared with the RFE and relief, the results of all algorithms of ANOVA feature selection were more stable with the AUC values higher than 0.800. Conclusions We demonstrated the feasibility of combining artificial intelligence with the radiomics from ADC values in the differential diagnosis of SRCMTs and non-SRCMTs and the potential of this non-invasive approach for clinical applications. Key Points • The parameter with the best diagnostic performance in differentiating SRCMTs from non-SRCMTs was the Perc.10% ADC value. • Results of all the algorithms of ANOVA feature selection were more stable and the AUCs were higher than 0.800, as compared with RFE and relief. • The pipeline using RFE feature selection and Gaussian process classifier yielded the highest AUC.


Sign in / Sign up

Export Citation Format

Share Document