Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT

2021 ◽  
pp. 20210003
Author(s):  
ZiYang Hu ◽  
TieMei Wang ◽  
Xiao Pan ◽  
DanTong Cao ◽  
JiaHao Liang ◽  
...  

Objectives: To evaluate the diagnostic accuracy using sodium iodide (NaI) and dimethyl sulfoxide (DMSO) as contrast agent in cone beam computed tomography (CBCT) scanning, and compare this with micro-CT. Methods: 18 teeth were cracked artificially by soaking them cyclically in liquid nitrogen and hot water. After pre-treatment with artificial saliva, the teeth were scanned in four modes: CBCT routine scanning without contrast agent (RS); CBCT with meglumine diatrizoate (MD) as contrast agent (ES1); CBCT with NaI + DMSO as contrast agent (ES2); and micro-CT (mCT). The number of crack lines was evaluated in all four modes. Depth of crack lines and number of cracks presented from the occlusal surface to the pulp cavity (Np) in ES2 and micro-CT images were evaluated. Results: There were 63 crack lines in all 18 teeth. 45 crack lines were visible on ES2 images as against four on the RS and ES1 images (p<0.05) and 37 on micro-CT images (p>0.05). Further, 34 crack lines could be observed on both ES2 and micro-CT images, and the average depth presented on ES2 images was 4.56 ± 0.88 mm and 3.89 ± 1.08 mm on micro-CT images (p<0.05). More crack lines could be detected from the occlusal surface to the pulp cavity on ES2 images than on micro-CT images (22 vs 11). Conclusion: CBCT with NaI +DMSO as the contrast agent was equivalent to micro-CT for number of crack lines and better for depth of crack lines. NaI + DMSO could be a potential CBCT contrast agent to improve diagnostic accuracy for cracked tooth.

Author(s):  
Hongya Dai ◽  
Dingqiang Yang ◽  
Lu Chen ◽  
Yibing Zhou ◽  
Xiaojing Wen ◽  
...  

Abstract Purpose The accuracy of target delineation for node-positive thoracic tumors is dependent on both four-dimensional computed tomography (4D-CT) and contrast-enhanced three-dimensional (3D)-CT images; these scans enable the motion visualization of tumors and delineate the nodal areas. Combining the two techniques would be more effective; however, currently, there is no standard protocol for the contrast media injection parameters for contrast-enhanced 4D-CT (CE-4D-CT) scans because of its long scan durations and complexity. Thus, we aimed to perform quantitative and qualitative assessments of the image quality of single contrast-enhanced 4D-CT scans to simplify this process and improve the accuracy of target delineation in order to replace the standard clinical modality involved in administering radiotherapy for thoracic tumors. Methods Ninety consecutive patients with thoracic tumors were randomly and parallelly assigned to one of nine subgroups subjected to CE-4D-CT scans with the administration of contrast agent volume equal to the patient’s weight but different flow rate and scan delay time (protocol A1: flow rate of 2.0 ml/s, delay time of 15 s; A2: 2.0 ml/s, 20 s; A3: 2.0 ml/s, 25 s; B1: 2.5 ml/s, 15 s; B2: 2.5 ml/s, 20 s; B3: 2.5 ml/s, 25 s; C1: 3.0 ml/s, 15 s; C2: 3.0 ml/s, 20 s; C3: 3.0 ml/s, 25 s). The Hounsfield unit (HU) values of the thoracic aorta, pulmonary artery stem, pulmonary veins, carotid artery, and jugular vein were acquired for each protocol. Both quantitative and qualitative image analysis and delineation acceptability were assessed. Results The results revealed significant differences among the nine protocols. Enhancement of the vascular structures in mediastinal and perihilar regions was more effective with protocol A1 or A2; however, when interested in the region of superior mediastinum and supraclavicular fossa, protocol C2 or C3 is recommended. Conclusion Qualitatively acceptable enhancement on contrast-enhanced 4D-CT images of thoracic tumors can be obtained by varying the flow rate and delay time when minimal contrast agent is used.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169424 ◽  
Author(s):  
Dongmei Yan ◽  
Zhihong Zhang ◽  
Qingming Luo ◽  
Xiaoquan Yang

2021 ◽  
Author(s):  
Dandan Song ◽  
Sohaib Shujaat ◽  
Karla de Faria Vasconcelos ◽  
Yan Huang ◽  
Constantinus Politis ◽  
...  

Abstract Background: Early detection of marginal bone loss is vital for treatment planning and prognosis of teeth and implant. This study was conducted to assess diagnostic accuracy of CBCT compared to intra-oral (IO) radiography for detection, classification and measurement of peri-implant bone defects in an animal model.Methods: Fifty-four mandible blocks with implants were harvested from nine male health adult beagle dogs with acquisition of IO, CBCT and micro-CT images from all samples. Peri-implant bone defects from 16 samples were diagnosed using micro-CT and classified into 3 defect categories: dehiscence (n = 5), infrabony defect (n = 3) and crater-like defect (n = 8). Following training and calibration of the observers, they asked to detect location (mesial, distal, buccal, lingual) and shape of the defect (dehiscence, horizontal defect, vertical defect, carter-like defect) utilizing both IO and CBCT images. Both observers assessed defect depth and width on IO, CBCT and micro-CT images at each side of peri-implant bone defect via CT-analyzer software. Data were analyzed using SPSS software and a p value of < 0.05 was considered as statistically significant. Results: Overall, there was a high diagnostic accuracy for detection of bone defects with CBCT images (sensitivity: 100%/100%), while IO images showed a reduction in accuracy (sensitivity: 69%/63%). Similarly, diagnostic accuracy for defect classification was significantly higher for CBCT, whereas IO images were unable to correctly identify vestibular dehiscence, with incorrect assessment of half of the infrabony defects. For accuracy of measuring defect depth and width, a higher correlation was observed between CBCT and gold standard micro-CT (r = 0.91, 95% CI: 0.86-0.94), whereas a lower correlation was seen for IO images (r = 0.82, 95%CI: 0.67-0.91).Conclusions: The diagnostic accuracy and reliability of CBCT was found to be superior to IO imaging for the detection, classification and measurement of peri-implant bone defects. The application of CBCT adds substantial information related to the peri-implant bone defect diagnosis and decision-making which cannot be achieved with conventional IO imaging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Song ◽  
Sohaib Shujaat ◽  
Karla de Faria Vasconcelos ◽  
Yan Huang ◽  
Constantinus Politis ◽  
...  

Abstract Background Early detection of marginal bone loss is vital for treatment planning and prognosis of teeth and implant. This study was conducted to assess diagnostic accuracy of CBCT compared to intra-oral (IO) radiography for detection, classification, and measurement of peri-implant bone defects in an animal model. Methods Fifty-four mandible blocks with implants were harvested from nine male health adult beagle dogs with acquisition of IO, CBCT and micro-CT images from all samples. Peri-implant bone defects from 16 samples were diagnosed using micro-CT and classified into 3 defect categories: dehiscence (n = 5), infrabony defect (n = 3) and crater-like defect (n = 8). Following training and calibration of the observers, they asked to detect location (mesial, distal, buccal, lingual) and shape of the defect (dehiscence, horizontal defect, vertical defect, carter-like defect) utilizing both IO and CBCT images. Both observers assessed defect depth and width on IO, CBCT and micro-CT images at each side of peri-implant bone defect via CT-analyzer software. Data were analyzed using SPSS software and a p value of < 0.05 was considered as statistically significant. Results Overall, there was a high diagnostic accuracy for detection of bone defects with CBCT images (sensitivity: 100%/100%), while IO images showed a reduction in accuracy (sensitivity: 69%/63%). Similarly, diagnostic accuracy for defect classification was significantly higher for CBCT, whereas IO images were unable to correctly identify vestibular dehiscence, with incorrect assessment of half of the infrabony defects. For accuracy of measuring defect depth and width, a higher correlation was observed between CBCT and gold standard micro-CT (r = 0.91, 95% CI 0.86–0.94), whereas a lower correlation was seen for IO images (r = 0.82, 95% CI 0.67–0.91). Conclusions The diagnostic accuracy and reliability of CBCT was found to be superior to IO imaging for the detection, classification, and measurement of peri-implant bone defects. The application of CBCT adds substantial information related to the peri-implant bone defect diagnosis and decision-making which cannot be achieved with conventional IO imaging.


Sign in / Sign up

Export Citation Format

Share Document