scholarly journals Retrofitting Homes for Energy Efficiency: An Integrated Approach to Innovation in the Low-Carbon Overhaul of Uk Social Housing

2012 ◽  
Vol 23 (6-7) ◽  
pp. 1027-1055 ◽  
Author(s):  
Michael Crilly ◽  
Mark Lemon ◽  
Andrew J Wright ◽  
Matthew B Cook ◽  
David Shaw
2019 ◽  
Vol 11 (9) ◽  
pp. 2507 ◽  
Author(s):  
Patricia Tzortzopoulos ◽  
Ling Ma ◽  
João Soliman Junior ◽  
Lauri Koskela

The UK government made significant commitments to upgrading the energy efficiency of seven million British homes by 2020, aiming at reducing carbon emissions and addressing fuel poverty. One alternative to achieve better energy performance in existing houses is retrofit. However, there are difficulties associated with retrofitting social housing. It is currently challenging to compare scenarios (retrofit options) considering costs, potential energy efficiency gains, and at the same time minimising disruption to users. This paper presents a Building Information Modelling (BIM) protocol aimed to support decision making by social housing owners. It adopts BIM to simulate alternative retrofit options, considering: (a) potential reductions in energy consumption, (b) 4D BIM for retrofit planning and reduction of users’ disruption and (c) simulation of costs. A what-if scenario matrix is proposed to support decision making in the selection of social housing retrofit solutions, according to client and users’ needs. A case study of the retrofit of a mid-terrace house is presented to demonstrate the workflow. The main output of the work is the BIM protocol, which can support client decision making in diverse social housing retrofit projects, considering all three elements (energy simulation, planning for reduced disruption and cost estimation) in an integrated fashion. Such an integrated approach enables clients to make better informed decisions considering diverse social housing retrofit options through a simple process using readily available BIM technology.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
James Peel ◽  
Vian Ahmed ◽  
Sara Saboor

Carbon emissions, being hazardous, are triggering social concerns which have led to the creation of international treaties to address climate change. Similarly, the United Kingdom under the Climate Change Act (2008) has committed to reducing its greenhouse gas emission by at least 80% over 1990 levels by 2050.  However, being the oldest member of the EU states (before Brexit), the UK has the oldest housing stock, which contributes to 45% of its carbon emissions due to the older dwellings. To address this issue low carbon retrofitting is needed. Therefore, this paper seeks to investigate the barriers and enablers to energy efficiency retrofitting in social housing in London, UK based on the perception of experts employed in National and construction companies with an experience that ranges between 6 to 16 years. Initial literature suggested that the problem of energy efficiency retrofitting in the general building stock has been addressed, however little has been reported on its application to social housing. This paper, therefore, groups the barriers and enablers into seven categories that include: financial matters, Technical, IT, Government policy and regulation, social factors (including awareness of the energy efficiency agenda), quality of workmanship and disruption to residents, using literature review, interviews and surveys with key stakeholders within the housing sector, and draws recommendations to enable effective and efficient retrofitting for social housing projects. 


Author(s):  
Barbara Schönig

Going along with the end of the “golden age” of the welfare state, the fordist paradigm of social housing has been considerably transformed. From the 1980s onwards, a new paradigm of social housing has been shaped in Germany in terms of provision, institutional organization and design. This transformation can be interpreted as a result of the interplay between the transformation of national welfare state and housing policies, the implementation of entrepreneurial urban policies and a shift in architectural and urban development models. Using an integrated approach to understand form and function of social housing, the paper characterizes the new paradigm established and nevertheless interprets it within the continuity of the specific German welfare resp. housing regime, the “German social housing market economy”.


2021 ◽  
pp. 1420326X2110130
Author(s):  
Manta Marcelinus Dakyen ◽  
Mustafa Dagbasi ◽  
Murat Özdenefe

Ambitious energy efficiency goals constitute an important roadmap towards attaining a low-carbon society. Thus, various building-related stakeholders have introduced regulations targeting the energy efficiency of buildings. However, some countries still lack such policies. This paper is an effort to help bridge this gap for Northern Cyprus, a country devoid of building energy regulations that still experiences electrical energy production and distribution challenges, principally by establishing reference residential buildings which can be the cornerstone for prospective building regulations. Statistical analysis of available building stock data was performed to determine existing residential reference buildings. Five residential reference buildings with distinct configurations that constituted over 75% floor area share of the sampled data emerged, with floor areas varying from 191 to 1006 m2. EnergyPlus models were developed and calibrated for five residential reference buildings against yearly measured electricity consumption. Values of Mean Bias Error (MBE) and Cumulative Variation of Root Mean Squared Error CV(RMSE) between the models’ energy consumption and real energy consumption on monthly based analysis varied within the following ranges: (MBE)monthly from –0.12% to 2.01% and CV(RMSE)monthly from 1.35% to 2.96%. Thermal energy required to maintain the models' setpoint temperatures for cooling and heating varied from 6,134 to 11,451 kWh/year.


2010 ◽  
Vol 14 (2) ◽  
pp. 83-93 ◽  
Author(s):  
Binu Parthan ◽  
Marianne Osterkorn ◽  
Matthew Kennedy ◽  
St. John Hoskyns ◽  
Morgan Bazilian ◽  
...  

2012 ◽  
Vol 253-255 ◽  
pp. 716-719
Author(s):  
Yang Wang ◽  
Yan Chen

Under the circumstances of the increasing energy consumption of buildings, the development and application of building energy efficiency technology have attracted the attention of many people. As one of the important building energy efficiency technologies, roof greening has played a positive role in building a low-carbon and energy-saving society. This paper analyzes the technological characteristics and the formation methods of the roof greening system. It also expounds on the role of roof greening in building energy conservation.


Sign in / Sign up

Export Citation Format

Share Document