Estimation of Acoustical Performance of Floating Floors from Dynamic Stiffness of Resilient Layers

2005 ◽  
Vol 12 (2) ◽  
pp. 99-113 ◽  
Author(s):  
Alessandro Schiavi ◽  
Andrea Pavoni Belli ◽  
Francesco Russo

This paper describes a procedure for evaluating the reduction in impact sound pressure level of floating floors by measuring the apparent dynamic stiffness of the resilient layer, according to International Standard EN 29052-1. The impact sound pressure level experimental data, obtained according to International Standard UNI EN ISO 140-8, was compared with estimates obtained from dynamic stiffness measurements. Results confirm the effectiveness of the empirical model. Two questions are addressed. The first concerns the decrease in layer thickness over time. The second concerns the relationship between damping ratio and performance.

2003 ◽  
Vol 22 (1) ◽  
pp. 27-32
Author(s):  
Takuya Fujimoto

Putting an ear close to a vibrating structure like a wall or a floor, we are able to hear structure-borne sounds clearly, but the loudness of such sounds has never been studied quantitatively. In this study, subjective experiments were carried out in order to obtain the relationship between loudness and the vibration amplitude of the ear's contact surface at low audible frequencies. The main result of this study is that the loudness of a structure-borne sound is almost equal to that of an air-borne sound with a sound pressure level 20 dB higher than the vibration velocity level (ref=5×10−8 m/s) of the surface. According to this result, the loudness of the structure-borne sound heard directly can be evaluated as a sound pressure level derived from the measured vibration amplitude of the structure.


2012 ◽  
Vol 30 (4) ◽  
pp. 349-359 ◽  
Author(s):  
Edith Van Dyck ◽  
Dirk Moelants ◽  
Michiel Demey ◽  
Alexander Deweppe ◽  
Pieter Coussement ◽  
...  

The present study aims to gain better insight into the connection between music and dance by examining the dynamic effects of the bass drum on a dancing audience in a club-like environment. One hundred adult participants moved freely in groups of five to a musical sequence that comprised six songs. Each song consisted of one section that was repeated three times, each time with a different sound pressure level of the bass drum. Hip and head movements were recorded using motion capture and motion sensing. The study demonstrates that people modify their bodily behavior according to the dynamic level of the bass drum when moving to contemporary dance music in a social context. Participants moved more actively and displayed a higher degree of tempo entrainment as the sound pressure level of the bass drum increased. These results indicate that the prominence of the bass drum in contemporary dance music serves not merely as a stylistic element; indeed, it has a strong influence on dancing itself.


Author(s):  
Untung Adi Santosa ◽  
Ikhsan Setiawan ◽  
B.S. Utomo

<p class="AbstractEnglish"><strong>Abstract: </strong>This paper reports the test results of a loudspeaker-based acoustic energy harvester with acoustic random noise sources from a motorcycle. The harvester consists of a quarter wavelength resonator and a subwoofer type loudspeaker with a nominal diameter of 6 inches. The motorcycle used in this experiment is 135 cc Bajaj Pulsar motorsport with modified exhaust from the GBS-Motosport Jakarta. The motor engine is operated at 3000 rpm, resulting in noise with a fluctuating Sound Pressure Level (SPL) in the range of (90-93) dB. Six variations of resonator lengths are used, those are 21 cm, 31 cm, 58 cm, 85 cm, 112 cm, and 139 cm. In this test, data of dominant frequency, SPL, and output rms voltage were taken for 15 minutes. The rms voltage is measured at 100 Ω load resistor. The results show that the 112 cm resonator produces the highest average rms electrical power, that is (0.21 ± 0.01) mW, which is obtained at frequency that fluctuates within (95-120) Hz. In addition, with random sound sources, SPL and its dominant frequency fluctuate greatly, so it will greatly affect the generated electric power. Further research is needed to enhance the output electrical power and anticipate the impact of frequency fluctuation which exists in random noise sources.</p><p class="AbstractEnglish"><strong>Abstrak: </strong>Paper ini memaparkan hasil pengujian alat pemanen energi akustik berbasis <em>loudspeaker </em>dengan sumber kebisingan acak dari mesin kendaraan bermotor. Alat pemanen energi akustik ini terdiri dari resonator seperempat panjang gelombang dan <em>loudspeaker</em> jenis <em>subwoofer</em> dengan diameter nominal 6 inci. Sumber kebisingan yang digunakan adalah motor Bajaj Pulsar 135 cc dengan knalpot modifikasi dari GBS-Motosport Jakarta. Mesin motor dioperasikan pada laju putaran tetap 3000 rpm, sehingga menghasilkan kebisingan dengan <em>SPL</em> (<em>sound pressure level</em>) yang berfluktuasi dalam interval (90-93) dB. Digunakan enam variasi panjang resonator, yaitu 21 cm, 31 cm, 58 cm, 85 cm, 112 cm, dan 139 cm. Dalam pengujian ini, data frekuensi dominan kebisingan, <em>SPL</em> kebisingan, dan tegangan keluaran alat pemanen energi akustik diambil selama 15 menit. Tegangan <em>rms</em> keluaran diukur pada resistor beban 100 Ω. Hasil eksperimen menunjukkan bahwa resonator dengan panjang 112 cm menghasilkan daya listrik <em>rms</em> rata-rata tertinggi yaitu sebesar (0,21 ± 0,01) mW, diperoleh pada frekuensi yang berfluktuasi antara 95 Hz sampai 120 Hz. Selain itu, hasil eksperimen ini menunjukkan bahwa dengan sumber bunyi acak, <em>SPL</em> kebisingan dan frekuensi dominannya sangat berfluktuasi, sehingga akan sangat berpengaruh terhadap daya listrik yang dihasilkan. Penelitian lebih lanjut diperlukan untuk meningkatkan daya listrik keluaran dan mengantisipasi dampak fluktuasi frekuensi sumber kebisingan acak.</p>


1969 ◽  
Vol 12 (1) ◽  
pp. 193-198 ◽  
Author(s):  
Ralph L. Shelton ◽  
William B. Arndt ◽  
Albert W. Knox ◽  
Mary Elbert ◽  
Linda Chisum ◽  
...  

A group of 21 subjects with well-fitted speech bulbs was compared for nasal sound pressure level (SPL) with a group of 13 subjects having moderate deficiency of palatopharyngeal closure. The difference in mean measures for the two groups was statistically significant. Correlation coefficients are reported for the relationships between nasal SPL and both a cinefluorographic measure of palatopharyngeal closure and several articulation measures.


2002 ◽  
Vol 205 (18) ◽  
pp. 2865-2874 ◽  
Author(s):  
Arjan Boonman ◽  
Gareth Jones

SUMMARYWhen approaching a prey target, bats have been found to decrease the intensity of their emitted echolocation pulses, called intensity compensation. In this paper we examine whether intensity compensation in the echolocation of bats is flexible or stereotyped. We recorded the echolocation calls of Daubenton's bats (Myotis daubentonii) while the animals attacked targets of different dimensions. Myotis daubentonii reduced the peak sound pressure level emitted by about 4dB for each halving of distance,irrespective of the target presented (mealworms and two different sizes of spheres). The absolute sound pressure level emitted by the bat is not or only a little affected by target strength. Furthermore, the decrease in emitted intensity over distance shows less scatter than the same intensity over time for the last 20 cm of target approach. The bats matched the emitted intensity to target distance equally well for the spheres (aspect-invariant target strength) as for the mealworms (aspect-dependent echo strength). We therefore conclude that intensity compensation does not rely on feedback information from received intensity, but instead follows a stereotyped pattern.


Sign in / Sign up

Export Citation Format

Share Document