scholarly journals Phenolic Control of Plant Nitrogen Acquisition through the Inhibition of Soil Microbial Decomposition Processes: A Plant-Microbe Competition Model

2009 ◽  
Vol 24 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Masayuki Ushio ◽  
Takeshi Miki ◽  
Kanehiro Kitayama
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron Mullins ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

AbstractIntrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.


2013 ◽  
Vol 373 (1-2) ◽  
pp. 955-965 ◽  
Author(s):  
Stephen D. LeDuc ◽  
David E. Rothstein ◽  
Zhanna Yermakov ◽  
Susan E. Spaulding

2014 ◽  
Vol 3 (3) ◽  
pp. 50
Author(s):  
Habib Kato ◽  
Robert Mulebeke ◽  
Felix Budara Bareeba ◽  
Elly Nyambobo Sabiiti

<p>Soil organic carbon (C) and nitrogen (N) decomposition in fecal manure of cattle fed browses of Calliandra (<em>Calliandra calothyrsus</em>), Gliricidia (<em>Gliricidia sepium</em>) and Leucaena (<em>Leucaena leucocephala</em>) browse/maize silage mixtures and maize (<em>Zea mays</em>) silage alone when applied to the soil were investigated in a pot experiment in comparison to the corresponding silages fed. Maize silage alone had the lowest N and a larger C: N ratio, making it a poor quality compost when applied to the soil, but compared to the browse/maize silage mixtures it had the highest level of soluble N as non-protein nitrogen (NPN) which makes much of its N available for soil microbial decomposition of its organic C. Calliandra browse/maize silage mixture had the highest level of fiber-bound N (ADFN), which reduces N availability for soil microbial decomposition of its organic C in spite of its high N content and a narrower C: N ratio. Fecal manure from maize silage alone had a lower level of N and a wider C: N ratio than fecal manure from the other silages fed which would affect its decomposition in the soil, but it had the lowest level of ADFN and much of its N is made available for soil microbial decomposition of its organic C. Soil samples after 12 weeks of the experiment showed that Calliandra browse/maize silage mixture maintained the highest level of C in the soil, while maize silage alone maintained the lowest level. Also soils treated with fecal manure from the other browse/maize silage mixtures maintained higher levels of C than fecal manure from maize silage alone. Organic C levels were lowest at 8 weeks of the experiment for all treatments and rose to the original levels at 12 weeks which could have been as a result of biotic and hydrologic factors coupled with soil aggregation. Decomposition of organic N followed a similar trend as organic C. The two elements are linked in both plant inputs in the soil and in the eventual soil humic substances. The soils treated with browse/maize silage mixtures maintained C: N ratios that were similar to that of the control soil and higher than those of the fecal manure treatments. Thus, in spite of the added silage materials to the soil, rapid decomposition of organic C could not occur to reflect benefits of adding the silage materials to the soil. Thus, fecal manure, particularly from feeding animals on browse/forage diets is more beneficial in the soil as it would decompose more readily releasing the plant nutrients they contain.</p>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gesche Blume-Werry ◽  
Eveline J. Krab ◽  
Johan Olofsson ◽  
Maja K. Sundqvist ◽  
Maria Väisänen ◽  
...  

AbstractArctic plant growth is predominantly nitrogen (N) limited. This limitation is generally attributed to slow soil microbial processes due to low temperatures. Here, we show that arctic plant-soil N cycling is also substantially constrained by the lack of larger detritivores (earthworms) able to mineralize and physically translocate litter and soil organic matter. These new functions provided by earthworms increased shrub and grass N concentration in our common garden experiment. Earthworm activity also increased either the height or number of floral shoots, while enhancing fine root production and vegetation greenness in heath and meadow communities to a level that exceeded the inherent differences between these two common arctic plant communities. Moreover, these worming effects on plant N and greening exceeded reported effects of warming, herbivory and nutrient addition, suggesting that human spreading of earthworms may lead to substantial changes in the structure and function of arctic ecosystems.


1998 ◽  
Vol 40 (3) ◽  
pp. 209-219 ◽  
Author(s):  
Murray Unkovich ◽  
Nicola Jamieson ◽  
Ross Monaghan ◽  
Declan Barraclough

Sign in / Sign up

Export Citation Format

Share Document