scholarly journals Zinc Finger E-Box Binding Protein 2 (ZEB2) Suppress Apoptosis of Vascular Endothelial Cells Induced by High Glucose Through Mitogen-Activated Protein Kinases (MAPK) Pathway Activation

2017 ◽  
Vol 23 ◽  
pp. 2590-2598 ◽  
Author(s):  
Lin-Jun Wang ◽  
Zi-Heng Wu ◽  
Xiang-Tao Zheng ◽  
Jian-Yun Long ◽  
Yang-Min Dong ◽  
...  
2021 ◽  
Vol 271 ◽  
pp. 113855
Author(s):  
Junxiao Xi ◽  
Yuezhao Rong ◽  
Zifeng Zhao ◽  
Yihai Huang ◽  
Pu Wang ◽  
...  

1999 ◽  
Vol 19 (4) ◽  
pp. 2763-2772 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Like other cellular models, endothelial cells in cultures stop growing when they reach confluence, even in the presence of growth factors. In this work, we have studied the effect of cellular contact on the activation of p42/p44 mitogen-activated protein kinase (MAPK) by growth factors in mouse vascular endothelial cells. p42/p44 MAPK activation by fetal calf serum or fibroblast growth factor was restrained in confluent cells in comparison with the activity found in sparse cells. Consequently, the induction of c-fos, MAPK phosphatases 1 and 2 (MKP1/2), and cyclin D1 was also restrained in confluent cells. In contrast, the activation of Ras and MEK-1, two upstream activators of the p42/p44 MAPK cascade, was not impaired when cells attained confluence. Sodium orthovanadate, but not okadaic acid, restored p42/p44 MAPK activity in confluent cells. Moreover, lysates from confluent 1G11 cells more effectively inactivated a dually phosphorylated active p42 MAPK than lysates from sparse cells. These results, together with the fact that vanadate-sensitive phosphatase activity was higher in confluent cells, suggest that phosphatases play a role in the down-regulation of p42/p44 MAPK activity. Enforced long-term activation of p42/p44 MAPK by expression of the chimera ΔRaf-1:ER, which activates the p42/p44 MAPK cascade at the level of Raf, enhanced the expression of MKP1/2 and cyclin D1 and, more importantly, restored the reentry of confluent cells into the cell cycle. Therefore, inhibition of p42/p44 MAPK activation by cell-cell contact is a critical step initiating cell cycle exit in vascular endothelial cells.


2000 ◽  
Vol 89 (6) ◽  
pp. 2391-2400 ◽  
Author(s):  
Hiroyuki Kito ◽  
Emery L. Chen ◽  
Xiujie Wang ◽  
Masataka Ikeda ◽  
Nobuyoshi Azuma ◽  
...  

The aim of this study was to examine the role of mitogen-activated protein kinases (MAPKs) activation in bovine pulmonary arterial endothelial cells (EC) exposed to cyclic strain. EC were subjected to 10% average strain at 60 cycles/min. Cyclic strain induced activation of extracellular signal-regulated kinase (ERK; 1.5-fold), c-Jun NH2-terminal protein kinase (JNK; 1.9-fold), and p38 (1.5-fold) with a peak at 30 min. To investigate the functional role of the activated MAPKs, we analyzed cells after treatment with PD-98059, a specific ERK kinase inhibitor, or SB-203580, a catalytic inhibitor for p38, and after transient transfection with JNK(K-R), and MEKK(K-M) the respective catalytically inactive mutants of JNK1 and MAPK kinase kinase-1. Cyclic strain increased activator protein-1 (AP-1) binding activity, which was blocked by PD-98059 and SB-203580. Activity of AP-1-dependent luciferase reporter driven by 12- O-tetradecanoyl-phorbol-13-acetate-responsive element (TRE) was induced by cyclic strain, and this was attenuated by PD-98059, MEKK(K-M), JNK(K-R), and SB-203580. PD-98059 and SB-203850 did not inhibit cell alignment and migration induced by cyclic strain. MEKK(K-M) and JNK(K-R) transfection did not block cyclic strain-induced cell alignment. In conclusion, cyclic strain activates ERK, JNK, and p38, and their activation plays a role in transcriptional activation of AP-1/TRE but not in cell alignment and migration changes in bovine pulmonary arterial EC.


Sign in / Sign up

Export Citation Format

Share Document