scholarly journals Apreçamento de Ativos Referenciados em Volatilidade

2006 ◽  
Vol 4 (2) ◽  
pp. 203
Author(s):  
Alan De Genaro Dario

Volatility swaps are contingent claims on future realized volatility. Variance swaps are similar instruments on future realized variance, the square of future realized volatility. Unlike a plain vanilla option, whose volatility exposure is contaminated by its asset price dependence, volatility and variance swaps provide a pure exposure to volatility alone. This article discusses the risk-neutral valuation of volatility and variance swaps based on the framework outlined in the Heston (1993) stochastic volatility model. Additionally, the Heston (1993) model is calibrated for foreign currency options traded at BMF and its parameters are used to price swaps on volatility and variance of the BRL / USD exchange rate.

Author(s):  
Huojun Wu ◽  
Zhaoli Jia ◽  
Shuquan Yang ◽  
Ce Liu

In this paper, we discuss the problem of pricing discretely sampled variance swaps under a hybrid stochastic model. Our modeling framework is a combination with a double Heston stochastic volatility model and a Cox–Ingersoll–Ross stochastic interest rate process. Due to the application of the T-forward measure with the stochastic interest process, we can only obtain an efficient semi-closed form of pricing formula for variance swaps instead of a closed-form solution based on the derivation of characteristic functions. The practicality of this hybrid model is demonstrated by numerical simulations.


2012 ◽  
Vol 15 (02) ◽  
pp. 1250016 ◽  
Author(s):  
BIN CHEN ◽  
CORNELIS W. OOSTERLEE ◽  
HANS VAN DER WEIDE

The Stochastic Alpha Beta Rho Stochastic Volatility (SABR-SV) model is widely used in the financial industry for the pricing of fixed income instruments. In this paper we develop a low-bias simulation scheme for the SABR-SV model, which deals efficiently with (undesired) possible negative values in the asset price process, the martingale property of the discrete scheme and the discretization bias of commonly used Euler discretization schemes. The proposed algorithm is based the analytic properties of the governing distribution. Experiments with realistic model parameters show that this scheme is robust for interest rate valuation.


2016 ◽  
Vol 57 (3) ◽  
pp. 244-268
Author(s):  
SANAE RUJIVAN

The main purpose of this paper is to present a novel analytical approach for pricing discretely sampled gamma swaps, defined in terms of weighted variance swaps of the underlying asset, based on Heston’s two-factor stochastic volatility model. The closed-form formula obtained in this paper is in a much simpler form than those proposed in the literature, which substantially reduces the computational burden and can be implemented efficiently. The solution procedure presented in this paper can be adopted to derive closed-form solutions for pricing various types of weighted variance swaps, such as self-quantoed variance and entropy swaps. Most interestingly, we discuss the validity of the current solutions in the parameter space, and provide market practitioners with some remarks for trading these types of weighted variance swaps.


2012 ◽  
Vol 15 (05) ◽  
pp. 1250033 ◽  
Author(s):  
M. COSTABILE ◽  
I. MASSABÒ ◽  
E. RUSSO

This article presents a lattice based approach for pricing contingent claims when the underlying asset evolves according to the double Heston (dH) stochastic volatility model introduced by Christoffersen et al. (2009). We discretize the continuous evolution of both squared volatilities by a "binomial pyramid", and consider the asset value as an auxiliary state variable for which a subset of possible realizations is attached to each node of the pyramid. The elements of the subset cover the range of asset prices at each time slice, and claim price is computed solving backward through the "binomial pyramid". Numerical experiments confirm the accuracy and efficiency of the proposed model.


In a recent study, Zhao et al. (2017) presented a tree methodology to evaluate the expected generalized realized variance in a general stochastic volatility model; it provided an efficient way of calculating the fair value of the strike for variance swaps. In this article, the authors expand the methodology to price nonlinear derivatives written on realized variance. They introduce a new option contract, a Bermudan variance swaption, defined as an option on variance swap with early exercise dates. Within the same framework they also show how to value forward-start variance swaps, VIX futures, and VIX options. Numerical tests show that the methodology is efficient and accurate.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1911
Author(s):  
Youngrok Lee ◽  
Yehun Kim ◽  
Jaesung Lee

The exotic options with curved nonlinear payoffs have been traded in financial markets, which offer great flexibility to participants in the market. Among them, power options with the payoff depending on a certain power of the underlying asset price are widely used in markets in order to provide high leverage strategy. In pricing power options, the classical Black–Scholes model which assumes a constant volatility is simple and easy to handle, but it has a limit in reflecting movements of real financial markets. As the alternatives of constant volatility, we focus on the stochastic volatility, finding more exact prices for power options. In this paper, we use the stochastic volatility model introduced by Schöbel and Zhu to drive the closed-form expressions for the prices of various power options including soft strike options. We also show the sensitivity of power option prices under changes in the values of each parameter by calculating the resulting values obtained from the formulas.


2008 ◽  
Vol 2008 ◽  
pp. 1-17 ◽  
Author(s):  
Elisa Alòs ◽  
Jorge A. León ◽  
Monique Pontier ◽  
Josep Vives

We obtain a Hull and White type formula for a general jump-diffusion stochastic volatility model, where the involved stochastic volatility process is correlated not only with the Brownian motion driving the asset price but also with the asset price jumps. Towards this end, we establish an anticipative Itô's formula, using Malliavin calculus techniques for Lévy processes on the canonical space. As an application, we show that the dependence of the volatility process on the asset price jumps has no effect on the short-time behavior of the at-the-money implied volatility skew.


Sign in / Sign up

Export Citation Format

Share Document