Effect of Maca Alcohol Extract Promotes Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells

2021 ◽  
Vol 11 (10) ◽  
pp. 4529-4536
Author(s):  
琴 何
2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


2020 ◽  
Vol 8 (21) ◽  
pp. 5984-5993
Author(s):  
He Zhang ◽  
Sirong Li ◽  
Yufeng Liu ◽  
Yijun Yu ◽  
Shichao Lin ◽  
...  

Fe3O4@GO/BMP2 protecting mesenchymal stem cells by regulating reactive oxygen species and promoting osteogenic differentiation of cells.


Author(s):  
FAM Abo-Aziza ◽  
AA Zaki ◽  
AS Amer ◽  
RA Lotfy

Background: In vitro impact of dihydrotestosterone (DHT) and 17-estradiol (E2) in osteogenic differentiation of castrated rat bone marrow mesenchymal stem cells (rBMMSC) still need to be clarified. Materials and Methods: The viability, proliferation and density of cultured rBMMSC isolated from sham operated (Sham) and castrated (Cast) male rats were evaluated. rBMMSC were cultured with osteogenic differentiating medium (ODM) in the presence of DHT (5,10 nM) and E2 (10,100 nM). Osteogenesis was evaluated by alizarin red staining and measurement of calcium deposition and bone alkaline phosphatase (BALP) activity. Results: Population doubling (PD) of rBMMSC isolated from Cast rats was significantly lower (P<0.05) compared to that isolated from Sham rats. rBMMSC from Cast rats showed low scattered calcified nodule after culturing in ODM and did not cause a significant increase in calcium deposition and B-ALP activity compared to rBMMSCs from Sham rats. Exposure of rBMMSC isolated from Cast rats to DHT (5 nM) or E2 (10 nM) in ODM showed medium scattered calcified nodules with significantly higher (P<0.05) calcium deposition and B-ALP activity. Moreover, exposure of rBMMSC to DHT (10 nM) or E2 (100 nM) showed high scattered calcified nodules with higher (P<0.01) calcium deposition and B-ALP activity Conclusion: These results indicated that the presence of testes might participate in controlling the in vitro proliferation and osteogenic differentiation capacity of rBMMSCs. DHT and E2 can enhance the osteogenic capacity of rBMMSCs in a dose-dependent manner. Based on these observations, optimum usage of DHT and E2 can overcome the limitations of MSCs and advance the therapeutic bone regeneration potential in the future.


Sign in / Sign up

Export Citation Format

Share Document