A Study of a Year of Cognitive Change and Local Low-Frequency Amplitude of Brain Function in Patients with Late-Onset Depression with Mild Cognitive Impairment

2018 ◽  
Vol 05 (02) ◽  
pp. 21-28
Author(s):  
红梅 傅
2021 ◽  
pp. 1-11
Author(s):  
Mirjam Frank ◽  
Jonas Hensel ◽  
Lisa Baak ◽  
Sara Schramm ◽  
Nico Dragano ◽  
...  

Background: The apolipoprotein E (APOE) ɛ4 allele is reported to be a strong genetic risk factor for mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Additional genetic loci have been detected that influence the risk for late-onset AD. As socioeconomic position (SEP) is also strongly related to cognitive decline, SEP has been suggested to be a possible modifier of the genetic effect on MCI. Objective: To investigate whether APOE ɛ4 and a genetic sum score of AD-associated risk alleles (GRSAD) interact with SEP indicators to affect MCI in a population-based cohort. Methods: Using data of 3,834 participants of the Heinz Nixdorf Recall Study, APOE ɛ4 and GRSAD by SEP interactions were assessed using logistic regression models, as well as SEP-stratified genetic association analysis. Interaction on additive scale was calculated using the relative excess risk due to interaction (RERI). All analysis were additionally stratified by sex. Results: Indication for interaction on the additive scale was found between APOE ɛ4 and low education on MCI (RERI: 0.52 [95% -confidence interval (CI): 0.01; 1.03]). The strongest genetic effects of the APOE ɛ4 genotype on MCI were observed in groups of low education (Odds ratio (OR): 1.46 [95% -CI: 0.79; 2.63] for≤10 years of education versus OR: 1.00 [95% -CI: 0.43; 2.14] for≥18 years of education). Sex stratified results showed stronger effects in women. No indication for interaction between the GRSAD and SEP indicators on MCI was observed. Conclusion: Results indicate that low education may have an impact on APOE ɛ4 expression on MCI, especially among women.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Massimiliano Castellazzi ◽  
Simone Patergnani ◽  
Mariapina Donadio ◽  
Carlotta Giorgi ◽  
Massimo Bonora ◽  
...  

AbstractDementia is a neurocognitive disorder characterized by a progressive memory loss and impairment in cognitive and functional abilities. Autophagy and mitophagy are two important cellular processes by which the damaged intracellular components are degraded by lysosomes. To investigate the contribution of autophagy and mitophagy in degenerative diseases, we investigated the serum levels of specific autophagic markers (ATG5 protein) and mitophagic markers (Parkin protein) in a population of older patients by enzyme-linked immunosorbent assay. Two hundred elderly (≥65 years) outpatients were included in the study: 40 (20 F and 20 M) with mild-moderate late onset Alzheimer’s disease (AD); 40 (20 F and 20 M) affected by vascular dementia (VAD); 40 with mild cognitive impairment (MCI); 40 (20 F and 20 M) with “mixed” dementia (MD); 40 subjects without signs of cognitive impairment were included as sex-matched controls. Our data indicated that, in serum samples, ATG5 and Parkin were both elevated in controls, and that VAD compared with AD, MCI and MD (all p < 0.01). Patients affected by AD, MD, and MCI showed significantly reduced circulating levels of both ATG5 and Parkin compared to healthy controls and VAD individuals, reflecting a significant down-regulation of autophagy and mitophagy pathways in these groups of patients. The measurement of serum levels of ATG5 and Parkin may represent an easily accessible diagnostic tool for the early monitoring of patients with cognitive decline.


Brain ◽  
2020 ◽  
Author(s):  
Shawn Hayley ◽  
Antoine M Hakim ◽  
Paul R Albert

Abstract Major depression is a prevalent illness that increases the risk of several neurological conditions. These include stroke, cardiovascular disease, and dementia including Alzheimer’s disease. In this review we ask whether certain types of depression and associated loneliness may be a harbinger of cognitive decline and possibly even dementia. We propose that chronic stress and inflammation combine to compromise vascular and brain function. The resulting increases in proinflammatory cytokines and microglial activation drive brain pathology leading to depression and mild cognitive impairment, which may progress to dementia. We present evidence that by treating the inflammatory changes, depression can be reversed in many cases. Importantly, there is evidence that anti-inflammatory and antidepressant treatments may reduce or prevent dementia in people with depression. Thus, we propose a model in which chronic stress and inflammation combine to increase brain permeability and cytokine production. This leads to microglial activation, white matter damage, neuronal and glial cell loss. This is first manifest as depression and mild cognitive impairment, but can eventually evolve into dementia. Further research may identify clinical subgroups with inflammatory depression at risk for dementia. It would then be possible to address in clinical trials whether effective treatment of the depression can delay the onset of dementia.


Brain ◽  
2020 ◽  
Author(s):  
Erik Kaestner ◽  
Anny Reyes ◽  
Austin Chen ◽  
Jun Rao ◽  
Anna Christina Macari ◽  
...  

Abstract Epilepsy incidence and prevalence peaks in older adults yet systematic studies of brain ageing and cognition in older adults with epilepsy remain limited. Here, we characterize patterns of cortical atrophy and cognitive impairment in 73 older adults with temporal lobe epilepsy (&gt;55 years) and compare these patterns to those observed in 70 healthy controls and 79 patients with amnestic mild cognitive impairment, the prodromal stage of Alzheimer’s disease. Patients with temporal lobe epilepsy were recruited from four tertiary epilepsy surgical centres; amnestic mild cognitive impairment and control subjects were obtained from the Alzheimer’s Disease Neuroimaging Initiative database. Whole brain and region of interest analyses were conducted between patient groups and controls, as well as between temporal lobe epilepsy patients with early-onset (age of onset &lt;50 years) and late-onset (&gt;50 years) seizures. Older adults with temporal lobe epilepsy demonstrated a similar pattern and magnitude of medial temporal lobe atrophy to amnestic mild cognitive impairment. Region of interest analyses revealed pronounced medial temporal lobe thinning in both patient groups in bilateral entorhinal, temporal pole, and fusiform regions (all P &lt; 0.05). Patients with temporal lobe epilepsy demonstrated thinner left entorhinal cortex compared to amnestic mild cognitive impairment (P = 0.02). Patients with late-onset temporal lobe epilepsy had a more consistent pattern of cortical thinning than patients with early-onset epilepsy, demonstrating decreased cortical thickness extending into the bilateral fusiform (both P &lt; 0.01). Both temporal lobe epilepsy and amnestic mild cognitive impairment groups showed significant memory and language impairment relative to healthy control subjects. However, despite similar performances in language and memory encoding, patients with amnestic mild cognitive impairment demonstrated poorer delayed memory performances relative to both early and late-onset temporal lobe epilepsy. Medial temporal lobe atrophy and cognitive impairment overlap between older adults with temporal lobe epilepsy and amnestic mild cognitive impairment highlights the risks of growing old with epilepsy. Concerns regarding accelerated ageing and Alzheimer’s disease co-morbidity in older adults with temporal lobe epilepsy suggests an urgent need for translational research aimed at identifying common mechanisms and/or targeting symptoms shared across a broad neurological disease spectrum.


2009 ◽  
Vol 5 (4S_Part_12) ◽  
pp. P367-P367
Author(s):  
Na Zhang ◽  
Mei-Yan Zhang ◽  
Kevin Head ◽  
Daniel Chang ◽  
Huishu Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document