Energy Method of Deformation Analysis for Flexible Pile Composite Foundation with Lateral Restriction

2021 ◽  
Vol 10 (11) ◽  
pp. 1129-1135
Author(s):  
义 李
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Youping Wu ◽  
Liangming Fu ◽  
Wenping Wu ◽  
Yuanyuan Cao ◽  
Xuanyang Zhou

To calculate the stress of cement-soil pile (flexible pile) in composite foundation accurately and overcome the defective preposition that the pile and the soil are elastic, the nonlinear analysis and calculation of pile-soil stress by adopting the energy method are performed. First, on the basis of the universally adopted load transfer method, it is assumed that the friction and the relative displacement of the pile shaft conform with the elastic-plastic relationship. Then, the modified Cam-clay model is introduced to calculate the compressive amount of soil around the pile. Further, the stress and strain characteristics curve of the flexible pile is used to calculate the compression of the pile, deducing the energy equation of the pile and soil around the pile, establishing the total potential energy expression of the flexible pile composite foundation, and the load sharing value and the corresponding stress value of the pile-soil are obtained based on the minimum potential energy principle. Finally, this method is verified by indoor laboratory model test and the reported case. The results show that the calculated solutions are in agreement with the measurements; therefore, the calculation method is reasonable.


2011 ◽  
Vol 261-263 ◽  
pp. 1694-1698 ◽  
Author(s):  
Feng Yi Tan ◽  
Xin Zhi Wang

The bearing performance of composite foundation improved by flexible piles was influenced by changes of cushion’s modulus, the modulus ratio between soil on bottom of pile and soil surrounded pile, which was analyzed by the finite element method. Results showed that: 1.For single pile, by increasing of cushion’s modulus, the bearing performance nearby the top of flexible pile increased apparently, and the common tendency of settlement of pile and soil surrounded piles was affected negatively. For multi-piles, the increasing of cushion’s modulus resulted in the increasing of bearing performance and the common tendency of settlement of piles and soil surrounded piles was affected positively. 2.The change of modulus ratio between soil surrounded piles and soil on bottom of piles resulted positively in the change of frictional resistance and end-bearing performance nearby the bottom of single pile and reduced the settlement of composite foundation. But the multi-pile borne absolutely all loading due to the increasing of modulus ratio, and both of piles and soil surrounded piles had the same tendency of settlement.


2014 ◽  
Vol 1065-1069 ◽  
pp. 119-122
Author(s):  
Kai Fu Liu ◽  
Yi Hu ◽  
Yi Jun Zhu ◽  
Zhi Yan Zou ◽  
Jin Ping Mao

Compared with pile-supported reinforced embankments, rigid-flexible pile composite foundation with geogrid reinforced cushion (RFPCFGRC) has its advantage of its economics. Piles play an important role in rigid flexible pile composite foundation with geogrid reinforced cushion. The bearing mechanics of RFPCFGRC is more complicated than that of pile-supported reinforced embankments because of addition of flexible piles. This paper discussed the diffence and the bearing mechanics of the two types of composidte foundation. The results show that addition of flexible piles has changed bearing mechanics of composite foundation and changes the load distribution among piles and soil. Soil arching degree of RFPCFGRC is larger than that of pile-supported reinforced embankments.


2021 ◽  
Author(s):  
Xiaoming Huang ◽  
Xiaoliang Liu ◽  
Jiaxing Li ◽  
Yongbin Chen ◽  
Dechen Wei ◽  
...  

Abstract In the process of machining aircraft monolithic components, the initial stress in the blank will cause machining deformation. Based on the energy method, an analytical mathematical model of machining deformation is presented in this paper. The key point is to transform the energy in the removed material into the deformation energy of the part after machining. The initial residual stress of 7050-T7451 aluminum alloy blank and single frame part are used as investigated case in the analytical model. For layer by layer machining, the deformation evolution is closely related to the tensile or compressive properties of the initial stress of removed material. Combined with the change of neutral axis position, The machining deformation is calculated by theoretical model. Then, FEM simulation is carried out to analyze the influence of stiffening ribs on machining deformation utilizing the semi-analytical model of equivalent bending stiffness. Furthermore, experiments are set up to verify the validity of the theory and FEM data. The results indicate that the deformation results of the experiment are consistent with that of theory and FEM model. Deformation is determined by energy of removed material. This paper provides a novel theoretical approaches for the further investigation of this issue.


2021 ◽  
Author(s):  
Xiaoming Huang ◽  
Xiaoliang Liu ◽  
Weitao Sun ◽  
Jiaxing Li ◽  
Yongbin Chen ◽  
...  

Abstract In the process of machining aircraft monolithic components, the initial stress in the blank will cause machining deformation. Based on the energy method, an analytical mathematical model of machining deformation is presented in this paper. The key point is to transform the energy in the removed material into the deformation energy of the part after machining. The initial residual stress of 7050-T7451 aluminum alloy blank and single frame part are used as investigated case in the analytical model. For layer by layer machining, the deformation evolution is closely related to the tensile or compressive properties of the initial stress of removed material. Combined with the change of neutral axis position, The machining deformation is calculated by theoretical model. Then, FEM simulation is carried out to analyze the influence of stiffening ribs on machining deformation utilizing the semi-analytical model of equivalent bending stiffness. Furthermore, experiments are set up to verify the validity of the theory and FEM data. The results indicate that the deformation results of the experiment are consistent with that of theory and FEM model. Deformation is determined by energy of removed material. This paper provides a novel theoretical approaches for the further investigation of this issue.


Sign in / Sign up

Export Citation Format

Share Document