Study of Spatial Externalities of Low-Carbon Innovation and Its Portfolio on Carbon Emissions

2019 ◽  
Vol 08 (01) ◽  
pp. 19-29
Author(s):  
淼 王
2019 ◽  
Vol 4 (12) ◽  
Author(s):  
T B A

Global warming, climate change is now affecting the world. The effort of the leaders to achieving the sustainable development is from New Urban Agenda (NUA), Sustainable Development Goals (SDG’s) and local level is local authorities.  SDG’s goal number 13 takes urgent action to combat climate change and its impact also SDG’s number 11 to sustainable cities and communities. The gap of this paper  Different cities face different challenges and issues. Local authorities will play a significant role in undertaking policy initiatives to combat carbon emissions of the city. Low Carbon Cities (LCC) is to reduce carbon emissions in all human activities in cities.  The objective of this paper is by applying the LCCF Checklist in planning permission for sustainable development. The methodology of this research is a mixed-method, namely quantitative and qualitative approach. The survey methods are by interview, questionnaire, and observation. Town planners are the subject matter expert in managing the planning permission submission for the development control of their areas. Descriptive statistical analysis will be used to show the willingness of the stakeholders, namely the developers and planning consultants in implementing of the LCCF. The contribution of this research will gauge readiness at the local authorities level. The findings of the LCCF checklist are identified as important in planning permission into the development control process. Surprisingly, that challenges and issues exist in multifaceted policy implementation the LCCF Checklist in a local authority. Finally based on Subang Jaya Municipal Councils, the existing approach in the application of the LCCF Checklist in the development control process will be useful for development control in a local authority towards sustainable development.  


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
Hongpeng Guo ◽  
Sidong Xie ◽  
Chulin Pan

This paper focuses on the impact of changes in planting industry structure on carbon emissions. Based on the statistical data of the planting industry in three provinces in Northeast China from 1999 to 2018, the study calculated the carbon emissions, carbon absorptions and net carbon sinks of the planting industry by using crop parameter estimation and carbon emissions inventory estimation methods. In addition, the multiple linear regression model and panel data model were used to analyze and test the carbon emissions and net carbon sinks of the planting industry. The results show that: (1). The increase of the planting area of rice, corn, and peanuts in the three northeastern provinces of China will promote carbon emissions, while the increase of the planting area of wheat, sorghum, soybeans, and vegetables will reduce carbon emissions; (2). Fertilizer application, technological progress, and planting structure factors have a significant positive effect on net carbon sinks, among which the changes in the planting industry structure have the greatest impact on net carbon sinks. Based on the comprehensive analysis, it is suggested that, under the guidance of the government, resource endowment and location advantages should be given full play to, and the internal planting structure of crops should be reasonably adjusted so as to promote the development of low-carbon agriculture and accelerate the development process of agricultural modernization.


2019 ◽  
Vol 11 (9) ◽  
pp. 2571
Author(s):  
Xujing Zhang ◽  
Lichuan Wang ◽  
Yan Chen

Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises’ requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men’s shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.


2013 ◽  
Vol 291-294 ◽  
pp. 1407-1412 ◽  
Author(s):  
Liang Jie Xia ◽  
Dao Zhi Zhao ◽  
Bai Yun Yuan

In low carbon economy, carbon emissions permit has become a kind of resource; in the market economy system, new economic relations between enterprises have appeared, these characteristics make enterprise operation cost structure and profiting pattern changed. The paper reviews the previous literature on carbon footprint, production optimization theory individual enterprise and supply chain operation management with carbon emissions constraints. Then the paper put forward four worth further research directions: Carbon emission cost distribution and scientific measurement in supply chain; supply chain operation based on consumer behavior in Low Carbon Economy Era; optimizing the allocation of carbon emissions permit in supply chain; Dynamic Multi-period operation optimization of carbon efficient supply chain.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


2017 ◽  
Vol 322 ◽  
pp. 290-295 ◽  
Author(s):  
Min Zhao ◽  
Michael Johnson ◽  
Wenzhi He ◽  
Guangming Li ◽  
Chen Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document