Numerical Investigation of the Influence of Trailing Edge Flap on the Performance of NACA0018 Airfoil

2021 ◽  
Vol 10 (02) ◽  
pp. 351-358
Author(s):  
永迪 于
2001 ◽  
Vol 105 (1049) ◽  
pp. 391-399 ◽  
Author(s):  
W. Chan ◽  
A. Brocklehurst

Abstract An analytical evaluation of the performance enhancement due to a servo-actuated trailing edge flap was carried out using the coupled rotor-fuselage model (CRFM). The performance enhancement from a trailing edge flap is achieved by introducing effective camber around the azimuth for a nominal aerofoil. An investigation on the best combination of flap parameters, namely the span, position, chord and deflection was carried out in order to identify an optimal configuration within given design constraints. The effects on vibratory control loads over a range of speed for a flap of 10% span, 20% chord, actuated at once per rev has expanded the retreating blade envelope for a Lynx aircraft by some 20kt. The flap hinge load was also examined and it was found not to be excessive. It was also confirmed that an actuated trailing edge flap does not have adverse effect on the pilot's control inputs to trim to a particular flight condition. This paper will discuss the aerodynamic enhancements derived from the application of the trailing edge flap and present conclusions drawn from this study.


2018 ◽  
Vol 55 (1) ◽  
pp. 382-389 ◽  
Author(s):  
Y. Tian ◽  
Z. Li ◽  
P. Q. Liu

2018 ◽  
Vol 141 (6) ◽  
Author(s):  
V. Tremblay-Dionne ◽  
T. Lee

The effect of trailing-edge flap (TEF) deflection on the aerodynamic properties and flowfield of a symmetric airfoil over a wavy ground was investigated experimentally. This Technical Brief is a continuation of Lee and Tremblay-Dionne (2018, “Experimental Investigation of the Aerodynamics and Flowfield of a NACA 0015 Airfoil Over a Wavy Ground,” ASME J. Fluids Eng., 140(7), p. 071202) in which an unflapped airfoil was employed. Regardless of the flap deflection, the cyclic variation in the sectional lift Cl and pitching moment Cm coefficients over the wavy ground always persists. The Cm also has an opposite trend to Cl. The flap deflection, however, produces an increased maximum and minimum Cl and Cm with a reduced fluctuation compared to their unflapped counterparts. The Cd increase outperforms the Cl increase, leading to a lowered Cl/Cd of the flapped airfoil.


Sign in / Sign up

Export Citation Format

Share Document