Numerical Investigation on Aerodynamic Performance of NACA0018 Airfoil Serrated Gurney Flap

2021 ◽  
Vol 10 (02) ◽  
pp. 578-585
Author(s):  
永迪 于
2012 ◽  
Vol 512-515 ◽  
pp. 623-627 ◽  
Author(s):  
Wan Li Zhao ◽  
Xiao Lei Zheng

Numerical investigation of large thick and low Reynolds airfoil of wind turbines by mounting indented Gurney flaps was carried out. The influenced rules of the position of Gurney flaps on the aerodynamic performance of airfoil under same height of flaps were achieved, and the optimal position of Gurney flap was presented. At last, the mechanism of wind turbine performance controlled by Gurney flap was discussed. The results can provide the theoretical guidance and technical support to wind turbines control in practical engineering.


2020 ◽  
Vol 33 (5) ◽  
pp. 1421-1432 ◽  
Author(s):  
Xiao QU ◽  
Yanfeng ZHANG ◽  
Xingen LU ◽  
Junqiang ZHU

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1448 ◽  
Author(s):  
Iñigo Aramendia ◽  
Aitor Saenz-Aguirre ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede ◽  
...  

The increasing capability of Wind Turbine (WT) based power generation systems has derived in an increment of the WT rotor diameter, i.e., longer rotor blades. This results in an increase of the electrical power generated but also in instabilities in the operation of the WT, especially due to the mechanical fatigue loads generated in its elements. In this context, flow control has appeared as a solution to improve the aerodynamic performance of the blades. These devices not only increase lift coefficient but also reduce mechanical fatigue loads. This paper presents a detailed numerical analysis of the effects of placing a passive flow control element, a Gurney Flap (GF), in a DU91W250 airfoil. Moreover, a numerical study of the influence of the GF length on the aerodynamic performance of the blade has been carried out. This study is considered as a basis for the development of an optimization technique of the GF length for long WT blades.


2021 ◽  
Vol 2 (4) ◽  
pp. 293-305
Author(s):  
Mohammad Mahdi Mahzoon ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap and trailing-edge wedge on the aerodynamic behavior of blunt trailing-edge airfoil Du97-W-300 which is equipped with vortex generator is studied. To do this, the role of Gurney flap and trailing-edge wedge on the lift and drag coefficient and also aerodynamic performance of the airfoil is studied. Validation of the numerical model is performed by comparison of the obtained results with those of experiment. Results show that before stall, Gurney flap leads to the increase in the aerodynamic performance in a wider range of angle of attack. Numerical findings reveal that the maximum increment for the aerodynamic performance is obtained at low angle of attack when trailing-edge wedge is employed. It is found that for the highest considered value of Gurney flap and trailing-edge wedge heights, where the highest values for the lift occur, the higher aerodynamic performance at low angle of attack is obtained when trailing-edge wedge is used and at high angle of attack, the Gurney flap results in a higher aerodynamic performance. It is also shown that when high aerodynamic performance is concerned, addition of Gurney flap to the airfoil leads to the higher value for the lift. Doi: 10.28991/HIJ-2021-02-04-03 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document