Study on the Sterilization Effect of Ozone Technology on Streptococcus faecalis in the Reclaimed Water of Opencast Mines

2022 ◽  
Vol 10 (01) ◽  
pp. 1-6
Author(s):  
志勇 雷
2008 ◽  
Vol 3 (2) ◽  
Author(s):  
L. Sala ◽  
S. Romero de Tejada

Where there is water scarcity, the situation is dramatic for aquatic ecosystems. In many Mediterranean basins the exploitation of water resources has gone clearly beyond renewable level and affects aquatic ecosystems. Thus, they may benefit from the recycling of high-quality effluents that can be used to cope with environmental water demands instead of being discharged. Their reclamation with natural technologies produces an improvement in quality based on the development of trophic webs built upon nutrients still dissolved in the reclaimed water. The main project in the Costa Brava area is that of the Empuriabrava constructed wetland system, where nitrified effluent is further treated to reduce the concentration of nutrients in the water and is reused for environmental enhancement. This facility is also an interesting site for bird-watching. Other projects where water recycling produces indirect benefits on the aquatic ecosystems are those in Tossa de Mar, affecting the “temporary” Tossa Creek (a watercourse which flows on temporary basis according to rainfall patterns), and in the Aro Valley, affecting the also “temporary”, but slightly bigger, Ridaura River. This document summarizes these projects and proposes practical recommendations for the use of treated effluents in the recreation and restoration of aquatic ecosystems.


2006 ◽  
Vol 1 (2) ◽  
Author(s):  
Artur Vallentin

Due to extreme water scarcity Jordan is integrating reclaimed water resources in the national water management system. This paper describes the recent framework conditions for reclaimed water use in agriculture in Jordan, with a focus on the central and southern Jordan Valley. The possible impacts of lower quality irrigation water on soil, groundwater, crops and human health are considered while appropriate guidelines and monitoring proposals are being developed. Testing of the guidelines and implementation of the monitoring systems have started with the final purpose of integrating them into the Jordanian standard and legal system and thus ensuring safe food for consumers and protection of the environment.


1993 ◽  
Vol 27 (1) ◽  
pp. 87-96 ◽  
Author(s):  
G. Schrale ◽  
R. Boardman ◽  
M. J. Blaskett

The Bolivar Sewage Treatment Works (STW) processes the urban and industrial sewage from the northern and eastern suburbs of Adelaide. The treatment capacity is equivalent to the sewage production of 1.1 million people. The disposal of more than 40 000 ML of reclaimed water into the sea has caused a progressive degradation of about 950 ha of seagrass beds which threatens the sustainability of the fisheries and marine ecosystems of Gulf St. Vincent. The current practice will no longer be viable to achieve compliance with the SA Marine Environment Protection Act, 1990. A Inter-Departmental Working Party recommmended that the Bolivar reclaimed water be disposed by irrigation of suitable land on the coastal plains north of Adelaide. They proposed the construction of two pipelines: a 12 km long pipeline to extend the distribution of reclaimed water in the most intense portion of the 3 500 hectares of irrigated horticulture on the Northern Adelaide Plains, and a second, 18 km long pipeline to deliver the remainder to a more northerly site for irrigation of an estimated 4 000 hectares of hardwood plantations. The paper summarizes the findings as they relate to public health, environmental, technical and financial aspects of land based disposal. Land based disposal would completely eliminate the marine degradation and also arrest the over-use of the NAP underground water resources for horticulture. The total net costs over thirty years for land based disposal are about $ 21.8 million. The ‘horticultural' pipeline of the land based disposal scheme is expected to be commercially viable. A shortfall in revenue from the afforestation component is expected and may need to be considered as an environmental cost of ceasing marine disposal.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 37-43 ◽  
Author(s):  
John M. Anderson

Australia is a relatively dry continent with an average runoff of 50 mm per year. The use of water resources in some river basins is approaching the limits of sustainability. Some adverse environmental impacts have been observed resulting from water diversions and from both reclaimed water and stormwater discharges. The paper describes current water recycling initiatives in Australia. These include: beneficial reuse of reclaimed water for urban, residential, industrial and agricultural purposes; recycling of greywater and stormwater; advanced treatment using membrane technology; and water efficient urban design. Some possible water recycling scenarios for Australia in the 21st century are examined. The implications of these scenarios are discussed.


Sign in / Sign up

Export Citation Format

Share Document