scholarly journals CONY - Computer code for Neutron Yield calculations: The 7Li(p,n)7Be and 3H(d,n)4He reactions.

2019 ◽  
Vol 23 ◽  
pp. 39
Author(s):  
M. Grigoriadou ◽  
M. Kokkoris ◽  
N. Patronis ◽  
R. Vlastou

The neutron beam facility at NCSR “Demokritos” is driven by a 5.5 MV tandem T11/25 Van De Graff accelerator that provides continuous, high intensity ion beams. Depending on the neutron production reaction, different energy regions of neutron beams are available. Neutron fields with well defined energies are produced by means of nuclear reactions such as: 7Li(p,n)7Be, 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He, delivering neutrons up to the energy of ~28 MeV. In order to fully characterize the neutron beam at NCSR “Demokritos”, in the framework of the present work, the CONY C++ computer code has been developed. The implementation of the code for the 7Li(p,n)7Be and 3H(d,n)4He reactions is discussed. The method of calculation of differential neutron yields by thin and thick targets is described. Specifically, for the reaction 7Li(p,n)7Be the mathematical singularity at near threshold energies is discussed along with the method that was used as to overcome this issue. Finally, the results of the code including the double differential neutron yields, the neutron beam energy distribution at the sample position and the total neutron yields have been compared with experimental data as well as with the results of the NeuSDesc software (JRC-IRMM: Neutron Source Description).

2020 ◽  
Vol 4 (4) ◽  
pp. 274-280
Author(s):  
S. Lukyanov ◽  
T. Issatayev ◽  
B.M. Hue ◽  
V. Maslov ◽  
K. Mendibayev ◽  
...  

The availability of new radioactive ion beams has broadened the study of nuclear reactions and nuclear structure. The main mechanism to produce the secondary beams is the fragmentation of the projectile. An alternative method for the production of the exotic nuclei is the multinucleon transfer. We measured production cross section for the B, C, N and O isotopes in the reaction 18O + Ta and the beam energy at 10 MeV/nucleon. The cross-sections were obtained by integrating the momentum distributions of the isotopes. It was shown that in deep inelastic processes the production yields of different isotopes could be well described using statistical models and could also be explained by the Qgg-systematic.


Author(s):  
О. О. Грицай ◽  
А. К. Гримало ◽  
В. В. Колотий ◽  
В. М. Венедиктов ◽  
С. П. Волковецький ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Paul Zakalek ◽  
Jingjing Li ◽  
Sarah Böhm ◽  
Ulrich Rücker ◽  
Jörg Voigt ◽  
...  

Compact accelerator-driven neutron sources allow to operate multiple optimised target-moderator-reflector (TMR) units adapted to the requirements of the respective instruments. The compact design of the TMR units allows an efficient coupling of neutron production, neutron moderation and extraction, but requires a novel way of optimisation. The neutronic performance of different TMR units based on polyethylene, heavy water and a mixture of heavy and light water moderators together with Pb and Be reflectors and a borated polyethylene absorber is discussed. Extraction channels for thermal and cold neutrons are investigated regarding the energy and time spectra.


2009 ◽  
Vol 15 (S3) ◽  
pp. 87-88
Author(s):  
José A. R. Pacheco de Carvalho ◽  
Cláudia F. F. P. R. Pacheco ◽  
António D. Reis

AbstractMaterial analysis, specially surface analysis of materials, has been increasingly important. A wide range of surface analysis techniques is available. The techniques are, generally, complementary. There are nuclear and non-nuclear techniques, e.g. microscopy. Nuclear techniques, which are nondestructive, permit analysis for a few microns near the surface. They have been applied to areas such as scientific, technologic, industry, arts and medicine, using MeV ion beams. Nuclear reactions permit to achieve high sensitivities for detection of light elements in heavy substrates and also discrimination of isotopes. We use ion-ion nuclear reactions, elastic scattering and the energy analysis method, where an energy spectrum is obtained of ions from the target for a chosen energy of the incident ion beam. The target composition and concentration profile information contained in the spectrum is computationally obtained through a computer program that has been developed for predicting such energy spectra. Predicted spectra obtained for variations of target parameters are compared with experimental data, giving that information. SEM and TEM are also used.


2008 ◽  
Vol 17 (02) ◽  
pp. 407-418
Author(s):  
R. GUIN ◽  
S. K. SAHA

Excitation functions and differential recoil range distributions in the interaction of 16 O with 75 As have been measured to investigate complete and incomplete fusion reactions. The measured cross sections were compared with theoretical calculations using the computer code ALICE-91. The results indicated predominant incomplete fusion processes in the production of near target products. This was further confirmed by recoil range distribution studies of the products at 104 MeV of beam energy. The relative contributions of complete and incomplete fusion channels are estimated from recoil range distribution measurements.


1994 ◽  
Vol 03 (01) ◽  
pp. 239-248 ◽  
Author(s):  
M.K. BHARDWAJ ◽  
I.A. RIZVI ◽  
A.K. CHAUBEY

The excitation function of α-induced reactions on 121Sb and 123Sb has been measured. The α-beam energy ranges from 55.0±0.5 MeV to 21.9±1.2 MeV. In these experiments, the stacked foil activation technique was used. The reaction yield was measured by counting the gamma ray activity produced by the alpha-induced reactions. Results so obtained were compared with the calculations from the geometry-dependent hybrid (GDH) model. The assumption of initial exciton number n0=4 with n=2, p=2 and h=0 best satisfies the results measured in the present work. The model calculations were done using the ALICE/LIVERMORE-82 computer code. The pre-equilibrium fraction has also been calculated.


Sign in / Sign up

Export Citation Format

Share Document