scholarly journals Speed of sound constraints on maximally-rotating neutron stars

2020 ◽  
Vol 27 ◽  
pp. 155
Author(s):  
Chrysovalantis Margaritis ◽  
Polychronis Koliogiannis Koutmiridis ◽  
Charalampos Moustakidis

In the present work we provide a theoretical treatment concerning the effects of the upper bound of the sound speed in dense matter on the bulk properties of maximally-rotating (at mass-shedding limit) neutron stars. We investigate to what extent the possible predicted (from various theories and conjectures) upper bounds on the speed of sound constrain various key quantities, such as the maximum mass and the corresponding radius, Keplerian frequency, Kerr parameter and moment of inertia. We mainly focus on the lower proposed limit, , and we explore in which mass region a rotating neutron star collapses to a black hole. In any case, useful relations of the mentioned bulk properties with the transition density are derived and compared with the corresponding non-rotating cases.

2022 ◽  
Vol 258 ◽  
pp. 07009
Author(s):  
Mateusz Cierniak ◽  
David Blaschke

The special point is a feature unique to models of hybrid neutron stars. It represents a location on their mass–radius sequences that is insensitive to the phase transition density. We consider hybrid neutron stars with a core of deconfined quark matter that obeys a constant–sound–speed (CSS) equation of state model and provide a fit formula for the coordinates of the special point as functions of the squared sound speed (cs2) and pressure scale (A) parameters. Using the special point mass as a proxy for the maximum mass of the hybrid stars we derive limits for the CSS model parameters based on the recent NICER constraint on mass and radius of pulsar PSR J0740+6620, 0.36 < Cs min2 < 0.43 and 80 < A[MeV/fm3] < 160. The upper limit for the maximum mass of hybrid stars depends on the upper limit for cs2 so that choosing cs,max2 = 0.6 results in Mmax < 2.7 M⊙, within the mass range of GW190814.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3651-3661
Author(s):  
Michał Marczenko

AbstractSeveral observations of high-mass neutron stars (NSs), as well as the first historic detection of the binary neutron star merger GW170817, have delivered stringent constraints on the equation of state (EoS) of cold and dense matter. Recent studies suggest that, in order to simultaneously accommodate a 2M⊙ NS and the upper limit on the compactness, the pressure has to swiftly increase with density and the corresponding speed of sound likely exceeds the conformal limit. In this work, we employ a unified description of hadron-quark matter, the hybrid quark-meson-nucleon (QMN) model, to investigate the EoS under NS conditions. We show that the dynamical confining mechanism of the model plays an important role in explaining the observed properties of NSs.


2020 ◽  
Vol 499 (3) ◽  
pp. 4526-4533
Author(s):  
X H Wu ◽  
S Du ◽  
R X Xu

ABSTRACT By assuming the formation of a black hole soon after the merger event of GW170817, the maximum mass of non-rotating stable neutron star, MTOV ≃ 2.3 M⊙, is proposed by numerical relativity, but there is no solid evidence to rule out MTOV &gt; 2.3 M⊙ from the point of both microphysical and astrophysical views. It is naturally expected that the equation of state (EOS) would become stiffer beyond a specific density to explain massive pulsars. We consider the possibility of EOSs with MTOV &gt; 2.3 M⊙, investigating the stiffness and the transition density in a polytropic model, for two kinds of neutron stars (i.e. gravity-bound and strong-bound stars on surface). Only two parameters are input in both cases: (ρt, γ) for gravity-bound neutron stars, while (ρs, γ) for strong-bound strange stars, with ρt the transition density, ρs the surface density, and γ the polytropic exponent. In the matter of MTOV &gt; 2.3 M⊙ for the maximum mass and 70 ≤ Λ1.4 ≤ 580 for the tidal deformability, it is found that the smallest ρt and γ should be ∼0.50 ρ0 and ∼2.65 for neutron stars, respectively, whereas for strange star, we have γ &gt; 1.40 if ρs &gt; 1.0 ρ0 (ρ0 is the nuclear saturation density). These parametric results could guide further research of the real EOS with any foundation of microphysics if a pulsar mass higher than 2.3 M⊙ is measured in the future, especially for an essential comparison of allowed parameter space between gravity-bound and strong-bound compact stars.


2013 ◽  
Vol 553 ◽  
pp. A22 ◽  
Author(s):  
N. Chamel ◽  
A. F. Fantina ◽  
J. M. Pearson ◽  
S. Goriely

2000 ◽  
Vol 177 ◽  
pp. 663-664
Author(s):  
D. Gondek-Rosińska ◽  
P. Haensel ◽  
J. L. Zdunik

AbstractWe find constraints on minimum and maximum mass of ordinary neutron stars imposed by their early evolution (protoneutron star stage). We calculate models of protoneutron stars using a realistic standard equation of state of hot, dense matter valid for both supranuclear and subnuclear densities. Results for different values of the nuclear incompressibility are presented.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Toru Kojo

AbstractNeutron stars are cosmic laboratories to study dense matter in quantum chromodynamics (QCD). The observable mass-radius relations of neutron stars are determined by QCD equations of state and can reflect the properties of QCD phase transitions. In the last decade, there have been historical discoveries in neutron stars; the discoveries of two-solar mass neutron stars and neutron star merger events, which have imposed tight constraints on equations of state. While a number of equations of state are constructed to satisfy these constraints, a theoretical challenge is how to reconcile those constructions with the microphysics expected from the hadron physics and in-medium calculations. In this short article, we briefly go over recent observations and discuss their implications for dense QCD matter, referring to QCD constraints in the low- and high-density limits, QCD-like theories, and lattice QCD results for baryon-baryon interactions.


Sign in / Sign up

Export Citation Format

Share Document