scholarly journals Results supporting the concept of the oxidant-mediated protein amino acid conversion, a naturally occurring protein engineering process, in human cells

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 594
Author(s):  
Yuichiro J. Suzuki ◽  
Jian-Jiang Hao

Reactive oxygen species (ROS) play an important role in the development of various pathological conditions as well as aging. ROS oxidize DNA, proteins, lipids, and small molecules. Carbonylation is one mode of protein oxidation that occurs in response to the iron-catalyzed, hydrogen peroxide-dependent oxidation of amino acid side chains. Although carbonylated proteins are generally believed to be eliminated through degradation, we previously discovered the protein de-carbonylation mechanism, in which the formed carbonyl groups are chemically eliminated without proteins being degraded. Major amino acid residues that are susceptible to carbonylation include proline and arginine, both of which are oxidized to become glutamyl semialdehyde, which contains a carbonyl group. The further oxidation of glutamyl semialdehyde produces glutamic acid. Thus, we hypothesize that through the ROS-mediated formation of glutamyl semialdehyde, the proline, arginine, and glutamic acid residues within the protein structure can be converted to each other. Mass spectrometry provided results supporting that proline 45 (a well-conserved residue within the catalytic sequence) of the peroxiredoxin 6 molecule may be converted into glutamic acid in cultured human cells, opening up a revolutionizing concept that biological oxidation elicits the naturally occurring protein engineering process.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 594 ◽  
Author(s):  
Yuichiro J. Suzuki ◽  
Jian-Jiang Hao

Reactive oxygen species (ROS) play an important role in the development of various pathological conditions as well as aging. ROS oxidize DNA, proteins, lipids, and small molecules. Carbonylation is one mode of protein oxidation that occurs in response to the iron-catalyzed, hydrogen peroxide-dependent oxidation of amino acid side chains. Although carbonylated proteins are generally believed to be eliminated through proteasome-dependent degradation, we previously discovered the protein de-carbonylation mechanism, in which the formed carbonyl groups are chemically eliminated without proteins being degraded. Major amino acid residues that are susceptible to carbonylation include proline and arginine, both of which are oxidized to become glutamyl semialdehyde, which contains a carbonyl group. The further oxidation of glutamyl semialdehyde produces glutamic acid. Thus, we hypothesize that through the ROS-mediated formation of glutamyl semialdehyde, the proline, arginine, and glutamic acid residues within the protein structure are interchangeable. In support of this hypothesis, mass spectrometry demonstrated that proline 45 (a well-conserved residue within the catalytic sequence) of the peroxiredoxin 6 molecule can be converted into glutamic acid in cultured human cells, establishing a revolutionizing concept that biological oxidation elicits the naturally occurring protein engineering process.


1977 ◽  
Vol 10 (1) ◽  
pp. 1-9 ◽  
Author(s):  
S. Scott Zimmerman ◽  
Marcia S. Pottle ◽  
George Némethy ◽  
Harold A. Scheraga

2019 ◽  
Vol 20 (4) ◽  
pp. 306-320 ◽  
Author(s):  
Omar Barukab ◽  
Yaser Daanial Khan ◽  
Sher Afzal Khan ◽  
Kuo-Chen Chou

Background: The amino acid residues, in protein, undergo post-translation modification (PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification which is known to be associated with regulation of various biological functions and pathological processes. Thus its identification is necessary to understand its mechanism. Experimental determination through site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, thus, the reliable computational model is required for identification of sulfotyrosine sites. Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of protein amino acid sequences and various position/composition relative features. These features are incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and independent testing. Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for crossvalidation, 94.3% for self-consistency and 94.3% for independent testing. Conclusion: The proposed model has better performance as compared to the existing predictors, however, the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins.


2018 ◽  
Vol 99 (5) ◽  
pp. 704-709 ◽  
Author(s):  
Yoriyuki Konno ◽  
Shumpei Nagaoka ◽  
Izumi Kimura ◽  
Mahoko Takahashi Ueda ◽  
Ryuichi Kumata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document