scholarly journals Protein Engineering of Venom Toxins by Synthetic Approach and NMR Dynamic Simulation: Status of Basic Amino Acid Residues in Waglerin I

1996 ◽  
Vol 227 (1) ◽  
pp. 59-63 ◽  
Author(s):  
Yu-Mei Hsiao ◽  
Chyh-Chong Chuang ◽  
Li-Chin Chuang ◽  
Hui-Ming Yu ◽  
Kung-Tsung Wang ◽  
...  
1988 ◽  
Vol 251 (3) ◽  
pp. 691-699 ◽  
Author(s):  
R W Olafson ◽  
W D McCubbin ◽  
C M Kay

Biochemical and physiological studies of Synechococcus cyanobacteria have indicated the presence of a low-Mr heavy-metal-binding protein with marked similarity to eukaryotic metallothioneins (MTs). We report here the characterization of a Synechococcus prokaryotic MT isolated by gel-permeation and reverse-phase chromatography. The large number of variants of this molecule found during chromatographic separation could not be attributed to the presence of major isoproteins as assessed by amino acid analysis and amino acid sequencing of isoforms. Two of the latter were shown to have identical primary structures that differed substantially from the well-described eukaryotic MTs. In addition to six long-chain aliphatic residues, two aromatic residues were found adjacent to one another near the centre of the molecule, making this the most hydrophobic MT to be described. Other unusual features included a pair of histidine residues located in repeating Gly-His-Thr-Gly sequences near the C-terminus and a complete lack of association of hydroxylated residues with cysteine residues, as is commonly found in eukaryotes. Similarly, aside from a single lysine residue, no basic amino acid residues were found adjacent to cysteine residues in the sequence. Most importantly, sequence alignment analyses with mammalian, invertebrate and fungal MT sequences showed no statistically significant homology aside from the presence of Cys-Xaa-Cys structures common to all MTs. On the other hand, like other MTs, the prokaryotic molecule appears to be free of alpha-helical structure but has a considerable amount of beta-structure, as predicted by both c.d. measurements and the Chou & Fasman empirical relations. Considered together, these data suggested that some similarity between the metal-thiolate clusters of the prokaryote and eukaryote MTs may exist.


1998 ◽  
Vol 64 (1) ◽  
pp. 121-124 ◽  
Author(s):  
S. M. Zahangir Hossain ◽  
Tomomi Ito ◽  
Satoshi Kanoh ◽  
Eiji Niwa

Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2125 ◽  
Author(s):  
Kazuma Murakami ◽  
Kazuhiro Irie

Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer’s disease (AD). There are numerous naturally occurring products that suppress the aggregation of Aβ42, but the underlying mechanisms remain to be elucidated. Based on NMR and MS spectroscopic analysis, we propose three structural characteristics found in natural products required for the suppressive activity against Aβ42 aggregation (i.e., oligomerization by targeting specific amino acid residues on this protein). These characteristics include (1) catechol-type flavonoids that can form Michael adducts with the side chains of Lys16 and 28 in monomeric Aβ42 through flavonoid autoxidation; (2) non-catechol-type flavonoids with planarity due to α,β-unsaturated carbonyl groups that can interact with the intermolecular β-sheet region in Aβ42 aggregates, especially aromatic rings such as those of Phe19 and 20; and (3) carboxy acid derivatives with triterpenoid or anthraquinoid that can generate a salt bridge with basic amino acid residues such as Lys16 and 28 in the Aβ42 dimer or trimer. Here, we summarize the recent body of knowledge concerning amyloidogenic inhibitors, particularly in functional food components and Kampo medicine, and discuss their application in the treatment and prevention of AD.


2010 ◽  
Vol 49 ◽  
pp. S101
Author(s):  
Ruslan Rafikov ◽  
Fabio V Fonseca ◽  
Sanjiv Kumar ◽  
Shawn Elms ◽  
David Fulton ◽  
...  

2000 ◽  
Vol 191 (9) ◽  
pp. 1487-1498 ◽  
Author(s):  
Helen Everett ◽  
Michele Barry ◽  
Siow Fong Lee ◽  
Xuejun Sun ◽  
Kathryn Graham ◽  
...  

M11L, a novel 166–amino acid membrane-associated protein expressed by the poxvirus, myxoma virus, was previously found to modulate apoptosis after infection of rabbit leukocytes. Furthermore, infection of rabbits with an M11L knockout virus unexpectedly produced lesions with a profound proinflammatory phenotype. We show here that M11L is antiapoptotic when expressed independently of other viral proteins, and is directed specifically to mitochondria by a short COOH-terminal region that is necessary and sufficient for targeting. This targeting region consists of a hydrophobic domain flanked by basic amino acid residues, adjacent to a positively charged tail. M11L blocks staurosporine-induced apoptosis by preventing mitochondria from undergoing a permeability transition, and the mitochondrial localization of this protein is essential for this function. We show that M11L is specifically required to inhibit the apoptotic response of monocytes/macrophages during virus infection, as cells of this lineage undergo apoptosis when infected with the M11L knockout virus. As monocyte apoptosis is uniquely proinflammatory, we propose that this observation reconciles the paradoxical proapoptotic and proinflammatory phenotypes of the M11L knockout virus. We suggest that apoptosis of tissue macrophages represents an important antiviral defense, and that the inhibition of apoptosis by viral proteins can be directed in a cell-specific fashion.


2013 ◽  
Vol 14 (9) ◽  
pp. 19067-19085 ◽  
Author(s):  
Ta-Jen Hung ◽  
Wei-Tang Chang ◽  
Noboru Tomiya ◽  
Yuan-Chuan Lee ◽  
Hao-Teng Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document