scholarly journals Managing Persistent Hypoxemia: what is new?

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1993
Author(s):  
Jesús Villar ◽  
Carlos Ferrando ◽  
Robert M Kacmarek

Mechanical ventilation is the standard life-support technique for patients with severe acute respiratory failure. However, some patients develop persistent and refractory hypoxemia because their lungs are so severely damaged that they are unable to respond to the application of high inspired oxygen concentration and high levels of positive end-expiratory pressure. In this article, we review current knowledge on managing persistent hypoxemia in patients with injured lungs.

2005 ◽  
Vol 11 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Carmen S??lvia Valente Barbas ◽  
Gustavo Faissol Janot de Matos ◽  
Mariangela Pimentel Pincelli ◽  
Eduardo da Rosa Borges ◽  
Telma Antunes ◽  
...  

2016 ◽  
Author(s):  
Eddy Fan ◽  
Alice Vendramin

Acute respiratory failure (ARF) is a common reason for admission to the intensive care unit (ICU), and is associated with significant morbidity and mortality. Failure of one or more components of the respiratory system can lead to hypoxemia, hypercabia, or both. Initial evaluation of patients with ARF should include physical examination, chest imaging, and arterial blood gases (ABG) sampling. As ARF is often a life-threatening emergency, a patient’s oxygenation and ventilation will need to be supported at the same time that diagnostic and therapeutic interventions are planned. The priorities for early treatment are essentially those of basic life support: airway and breathing. The first step is to assess a patient’s airway and ascertain that it is patent. This is followed by efforts to support both oxygenation and ventilation. This can include non-invasive or invasive mechanical ventilatory support. As with all interventions, there are risks inherent in the use of mechanical ventilation, which may be minimized by the use of lung protective ventilation (i.e., with low tidal volumes and airway pressures). Finally, due to the potential complications associated with mechanical ventilation, it is important to regularly assess whether a patient continues to require the assistance of the ventilator, and to liberate patients from mechanical ventilation at the earliest opportunity when clinically safe and feasible to do so. Figures depict pressure-time curve. Tables list the clinical causes of hypoxemic respiratory failure, oxygen delivery devices, indications for noninvasive positive pressure support, common causes of abnormal respiratory mechanics, and common causes of acute respiratory distress syndrome (ARDS). This review contains 2 highly rendered figures, 5 tables, and 86 references.


2018 ◽  
Author(s):  
Eddy Fan ◽  
Alice Vendramin

Acute respiratory failure (ARF) is a common reason for admission to the intensive care unit (ICU), and is associated with significant morbidity and mortality. Failure of one or more components of the respiratory system can lead to hypoxemia, hypercabia, or both. Initial evaluation of patients with ARF should include physical examination, chest imaging, and arterial blood gases (ABG) sampling. As ARF is often a life-threatening emergency, a patient’s oxygenation and ventilation will need to be supported at the same time that diagnostic and therapeutic interventions are planned. The priorities for early treatment are essentially those of basic life support: airway and breathing. The first step is to assess a patient’s airway and ascertain that it is patent. This is followed by efforts to support both oxygenation and ventilation. This can include non-invasive or invasive mechanical ventilatory support. As with all interventions, there are risks inherent in the use of mechanical ventilation, which may be minimized by the use of lung protective ventilation (i.e., with low tidal volumes and airway pressures). Finally, due to the potential complications associated with mechanical ventilation, it is important to regularly assess whether a patient continues to require the assistance of the ventilator, and to liberate patients from mechanical ventilation at the earliest opportunity when clinically safe and feasible to do so. Figures depict pressure-time curve. Tables list the clinical causes of hypoxemic respiratory failure, oxygen delivery devices, indications for noninvasive positive pressure support, common causes of abnormal respiratory mechanics, and common causes of acute respiratory distress syndrome (ARDS). This review contains 2 highly rendered figures, 5 tables, and 86 references.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (2) ◽  
pp. 261-261
Author(s):  
Thomas Bell

Purpose of the Study. This report presents the experience with one case of status asthmaticus who failed to respond to mechanical ventilation and was successfully managed with extracorporeal life support (ECLS) using venovenous bypass. The purpose is to inform the practitioner of an additional therapy, potentially of benefit, in management of asthma complicated by treatment-resistant respiratory failure. Methods. Low volume venovenous bypass with extracorporeal life support resolved severe respiratory failure in a 23-year-old female asthmatic over a 22-hour period after failure of 5 hours of mechanical ventilation. Bypass was initiated remotely by an ECLS team using a portable ECLS circuit before the 180-mile transport to the "nearby" center. Details of the technique are presented. Conclusion and Reviewer's Comments. This may be the first instance where asthma was the primary indication for ECLS; other asthmatics have been so treated, but for other complicating conditions like pneumonia and adult respiratory distress syndrome. This report provides a further alternative therapy, even in somewhat remote areas, for asthma-caused respiratory failure.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Mohammed N Al Shafi'i ◽  
Doaa M. Kamal El-din ◽  
Mohammed A. Abdulnaiem Ismaiel ◽  
Hesham M Abotiba

Abstract Background Noninvasive positive pressure ventilation (NIPPV) has been increasingly used in the management of respiratory failure in intensive care unit (ICU). Aim of the Work is to compare the efficacy and resource consumption of NIPPMV delivered through face mask against invasive mechanical ventilation (IMV) delivered by endotracheal tube in the management of patients with acute respiratory failure (ARF). Patients and Methods This prospective randomized controlled study included 78 adults with acute respiratory failure who were admitted to the intensive care unit. The enrolled patients were randomly allocated to receive either noninvasive ventilation or conventional mechanical ventilation (CMV). Results Severity of illness, measured by the simplified acute physiologic score 3 (SAPS 3), were comparable between the two patient groups with no significant difference between them. Both study groups showed a comparable steady improvement in PaO2:FiO2 values, indicating that NIPPV is as effective as CMV in improving the oxygenation of patients with ARF. The PaCO2 and pH values gradually improved in both groups during the 48 hours of ventilation. 12 hours after ventilation, NIPPMV group showed significantly more improvement in PaCO2 and pH than the CMV group. The respiratory acidosis was corrected in the NIPPV group after 24 hours of ventilation compared with 36 hours in the CMV group. NIPPV in this study was associated with a lower frequency of complications than CMV, including ventilator acquired pneumonia (VAP), sepsis, renal failure, pulmonary embolism, and pancreatitis. However, only VAP showed a statistically significant difference. Patients who underwent NIPPV in this study had lower mortality, and lower ventilation time and length of ICU stay, compared with patients on CMV. Intubation was required for less than a third of patients who initially underwent NIV. Conclusion Based on our study findings, NIPPV appears to be a potentially effective and safe therapeutic modality for managing patients with ARF.


Sign in / Sign up

Export Citation Format

Share Document