scholarly journals The central role of nucleic acids in the pathogenesis of systemic lupus erythematosus

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 368 ◽  
Author(s):  
David S. Pisetsky

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease whose pathogenesis can be conceptualized by a model based on a central role for immune complexes (ICs) between antinuclear antibodies and nucleic acids. According to this model, ICs can promote pathogenesis by two main mechanisms: deposition in the tissue to incite local inflammation and interaction with cells of the innate immune system to stimulate the production of cytokines, most prominently type 1 interferon. The latter stimulation results from the uptake of DNA and RNA in the form of ICs into cells and subsequent signaling by internal nucleic acid sensors for DNA and RNA. These sensors are likely important for the response to intracellular infection, although they may also be triggered during cell stress or injury by DNA or RNA aberrantly present in the cytoplasm. For IC formation, a source of extracellular DNA and RNA is essential. The current model of SLE posits that cell death is the origin of the nucleic acids in the ICs and that impairment of clearance mechanisms increases the amount of nuclear material in the extracellular space. This model of SLE is important since it points to new approaches to therapy; agents targeting interferon or the interferon receptor are examples of therapeutic approaches derived from this model. Future studies will explore novel biomarkers to monitor the operation of these mechanisms and to elucidate other steps in pathogenesis that can be targeted for therapy.

2020 ◽  
Vol 23 (13) ◽  
Author(s):  
Ikram khazal Qasim Al- hasso ◽  
Aida Rashid Al- Derzi ◽  
Ahmed Abdul-hassan Abbas ◽  
Faiq I. Gorial ◽  
Ahmed Sameer Alnuimi

2020 ◽  
Vol 8 ◽  
pp. 2050313X2091002 ◽  
Author(s):  
Umut Selamet ◽  
Ramy M Hanna ◽  
Anthony Sisk ◽  
Lama Abdelnour ◽  
Lena Ghobry ◽  
...  

Drug-induced lupus erythematosus has features distinct from primary systemic lupus erythematosus. It can occur with a wide variety of agents that result in the generation of anti-histone or other types of antibodies. Systemic manifestations of drug-induced systemic lupus erythematosus may include renal dysfunction due to circulating immune complexes or due to other immune reactions to the culprit medication(s). Acute interstitial nephritis occurs due to DNA–drug or protein–drug complexes that trigger an allergic immune response. We report a patient who developed acute kidney injury, rash, and drug-induced systemic lupus diagnosed by serologies after starting chlorthalidone and amiodarone. A renal biopsy showed acute interstitial nephritis and not lupus-induced glomerulonephritis. It is important to note that systemic lupus erythematosus and acute interstitial nephritis can occur together, and this report highlights the role of the kidney biopsy in ascertaining the pathological diagnosis and outlining therapy in drug-induced lupus erythematosus.


2016 ◽  
Vol 113 (38) ◽  
pp. 10637-10642 ◽  
Author(s):  
Elaine V. Lourenço ◽  
Aijing Liu ◽  
Giuseppe Matarese ◽  
Antonio La Cava

Leptin is an adipocytokine that plays a key role in the modulation of immune responses and the development and maintenance of inflammation. Circulating levels of leptin are elevated in systemic lupus erythematosus (SLE) patients, but it is not clear whether this association can reflect a direct influence of leptin on the propathogenic events that lead to SLE. To investigate this possibility, we compared the extent of susceptibility to SLE and lupus manifestations between leptin-deficient (ob/ob) and H2-matched leptin-sufficient (wild-type, WT) mice that had been treated with the lupus-inducing agent pristane. Leptin deficiency protected ob/ob mice from the development of autoantibodies and renal disease and increased the frequency of immunoregulatory T cells (Tregs) compared with leptin-sufficient WT mice. The role of leptin in the development of SLE was confirmed in the New Zealand Black (NZB) × New Zealand White (NZW)F1 (NZB/W) mouse model of spontaneous SLE, where elevated leptin levels correlated with disease manifestations and the administration of leptin accelerated development of autoantibodies and renal disease. Conversely, leptin antagonism delayed disease progression and increased survival of severely nephritic NZB/W mice. At the cellular level, leptin promoted effector T-cell responses and facilitated the presentation of self-antigens to T cells, whereas it inhibited the activity of regulatory CD4 T cells. The understanding of the role of leptin in modulating autoimmune responses in SLE can open possibilities of leptin-targeted therapeutic intervention in the disease.


2008 ◽  
Vol 4 (1) ◽  
pp. 33-42
Author(s):  
Kerstin Sarter ◽  
Connie Schulze ◽  
Reinhard E Voll ◽  
Martin Herrmann

Author(s):  
A. Giancotti ◽  
A. Spagnuolo ◽  
F. Bisogni ◽  
V. D’Ambrosio ◽  
G. Pasquali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document