scholarly journals A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 242
Author(s):  
Melissa Trotman-Lucas ◽  
Claire L. Gibson

Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness. In vitro and in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets. In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke. In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 242
Author(s):  
Melissa Trotman-Lucas ◽  
Claire L. Gibson

Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness. In vitro and in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets. In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke. In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Zhang ◽  
Miaomiao Jiang ◽  
Hui Zhao ◽  
Lan Han ◽  
Yu Jin ◽  
...  

Ischemic stroke is a common neurological disease that can lead to mortality and disability. The current curative effect remains unsatisfactory because drug accumulation in the diseased areas is insufficient as a result of the unique blood–brain barrier. Therefore, much attention has been paid to develop a novel therapeutic compound, paeonol-ozagrel conjugate (POC), for ischemic stroke. Then, POC was successfully synthesized by conjugating of paeonol and ozagrel as mutual prodrug. A series of in vitro characterizations and evaluations, including high - resolution mass spectroscopy, nuclear magnetic resonance spectroscopy, partition coefficient, and assessment of cytotoxicity against PC12 cells, were performed. Pharmacokinetic study demonstrated POC is eliminated quickly (t1/2 = 53.46 ± 19.64 min), which supported a short dosing interval. The neurological score, infarct volume, histopathological changes, oxidative stress, inflammatory cytokines levels, and TXA2 levels also were evaluated in vivo in middle cerebral artery occlusion (MCAO) rats. All results showed that POC had a significant curative and therapeutic effect on ischemic stroke, as evaluated by the middle cerebral artery occlusion. Overall, POC can be expected to become a new drug candidate for the treatment of ischemic stroke.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


Stroke ◽  
2001 ◽  
Vol 32 (suppl_1) ◽  
pp. 352-352
Author(s):  
Fuhai Li ◽  
Matthew D Silva ◽  
Xiangjun Meng ◽  
Christopher H Sotak ◽  
Marc Fisher

P75 Background and Purpose: Previous studies demonstrated that secondary ischemic lesions documented by diffusion-weighted imaging might be smaller than, larger than or similar to initial lesions that occur during ischemia. The purpose of this study was to investigate if the size of secondary lesions can be predicted. Methods: Twelve rats underwent 30 minutes of transient middle cerebral artery occlusion with the intraluminal suture method. Diffusion- and perfusion-weighted images were performed just before reperfusion, 90 minutes and 24 hours after reperfusion. The ischemic lesion size was calculated by tracing visual abnormalities on the apparent diffusion coefficient (ADC) maps. Cerebral blood flow index (CBF i ) ratio was calculated by dividing the ipsilateral CBF i by the contralateral CBF i . Based on difference between initial and secondary lesion volume, rats were assigned to reperfusion-benefit group (n=6) where secondary lesions were smaller than initial lesions (less than 85% of initial lesions) and reperfusion-nonbenefit group (n=6) where secondary lesions were similar to or larger than initial lesions (more than 85% of initial lesions). Results: At 90 minutes after reperfusion, the initial ischemic lesions almost disappeared in both groups. At 24 hours, secondary lesions were 54±11% (mean±SD) of the initial lesions in the reperfusion-benefit group and 100±14% of the initial lesions in the reperfusion-nonbenefit group (p<0.001). There was no difference in ADC values (47±2×10 -5 mm 2 /s vs 46±5×10 -5 mm 2 /s, p=0.7) and CBF i ratio (0.62±0.06 vs 0.67±0.04, p=0.2) between the two groups before reperfusion. However, the initial lesion volume was significantly smaller in the reperfusion-benefit group than in the reperfusion-nonbenefit group (125±54 mm 3 vs 195±36 mm 3 , p=0.037). Conclusions: Changes of ADC values and CBF before reperfusion are unable to predict if initial ischemic lesions will eventually shrink or not after reperfusion. Smaller size of initial lesions may suggest that secondary lesions will be smaller than initial lesions.


2021 ◽  
Author(s):  
Mitch Paro ◽  
Daylin Gamiotea Turro ◽  
Leslie Blumenfeld ◽  
Ketan R Bulsara ◽  
Rajkumar Verma

Background and Purpose: No effective treatment is available for most patients who suffer ischemic stroke. Development of novel treatment options is imperative. The brain attempts to self-heal after ischemic stroke via various mechanism mediated by restored blood circulation in affected region of brain but this process is limited by inadequate angiogenesis or neoangiogenesis. Encephalomyosynangiosis (EMS) is a neurosurgical procedure that achieves angiogenesis with low morbidity in patients with moyamoya disease, reducing risk of stroke. However, EMS, surgery has never been studied as an therapeutic option after ischemic stroke. Here we described a novel procedure and feasibility data for EMS after ischemic stroke in mice. Methods: A 60 mins of middle cerebral artery occlusion (MCAo) was used to induce ischemic stroke in mice. After 3-4 hours of MCAo onset/sham, EMS was performed. Mortality of EMS, MCAo and. MCAo+EMS mice was recorded up to 21 days after surgery. Graft tissue viability was measured using a nicotinamide adenine dinucleotide reduced tetrazolium reductase assay. Results: EMS surgery after ischemic stroke does not increase mortality compared to stroke alone. Graft muscle tissue remained viable 21 days after surgery. Conclusions: This novel protocol is effective and well-tolerated, may serve as novel platform for new angiogenesis and thus recovery after ischemic stroke. If successful in mice, EMS can a very feasible and novel treatment option for ischemic stroke in humans.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Terrance Chiang ◽  
Sean Harvey ◽  
Arjun V Pendharkar ◽  
Michelle Y Cheng ◽  
Gary K Steinberg

Introduction: Manual scoring of behavior tests is commonly used for assessing motor deficits after stroke, however, it is labor intensive and subject to bias. These limitations lead to inconsistent assessment between research groups and non-reproducible data. In this study, we investigated the feasibility of an automated motor deficit assessment system, Erasmus ladder, in two ischemic stroke models. Methods: Distal middle cerebral artery occlusion (dMCAO n=10) or transient middle cerebral artery occlusion (tMCAO 30 minutes, n=15) were performed on male C57BL6J mice (11-13 weeks) to generate cortical ischemic stroke, with. Naïve mice (n=10) were used as controls. Immunohistochemistry was performed on brains collected at post-stroke day (PD) 30 to assess for infarct size (MAP2) and inflammation (CD68). Mice without infarct in both cortex and striatum were excluded from the study. Behavior was assessed using Erasmus ladder at pre-stroke baseline (4 unperturbed and 4 perturbed sessions) and on PD 7, 14, 21, and 28 (all perturbed sessions). Results: Erasmus ladder detected significant motor deficits in the tMCAO model, specifically in the pre- and post- perturbed times as well as several key step types (HH long). Analyses in the tMCAO model reveal changes in various step patterns and their capability to react to the perturbation (obstacle). These significant motor deficits after tMCAO were detectable until PD28. We also observed a sustained decline in the use of affected limb compared to unaffected limb until PD28. While this trend is also present in dMCAO model, motor deficits were detected in the dMCAO only at early timepoints (PD7) and the difference subsided by PD28. Conclusion: We have assessed the data collected by Erasmus ladder on mice that underwent two commonly used stroke models (tMCAO and dMCAO). Our data showed that Erasmus ladder can detect long term motor deficit including reduced use of affected limb, step pattern, and motor reaction to obstacle. This automated instrument is effective in detecting motor deficits in the tMCAO model and thus, can be used to evaluate treatments for enhancing recovery after stroke.


2020 ◽  
pp. neurintsurg-2020-016427
Author(s):  
Adam de Havenon ◽  
Ana Paula Narata ◽  
Aymeric Amelot ◽  
Jeffrey L Saver ◽  
Hormozd Bozorgchami ◽  
...  

BackgroundThe benefit of endovascular thrombectomy for acute ischemic stroke with M2 segment middle cerebral artery occlusion remains controversial, with uncertainty and paucity of data specific to this population.ObjectiveTo compare outcomes between M1 and M2 occlusions in the Analysis of Revascularization in Ischemic Stroke with EmboTrap (ARISE II) trial.MethodsWe performed a prespecified analysis of the ARISE II trial with the primary outcome of 90-day modified Rankin Scale score of 0–2, which we termed good outcome. Secondary outcomes included reperfusion rates and major adverse events. The primary predictor was M2 occlusion, which we compared with M1 occlusion.ResultsWe included 183 patients, of whom 126 (69%) had M1 occlusion and 57 (31%) had M2 occlusion. There was no difference in the reperfusion rates or adverse events between M2 and M1 occlusions. The rate of good outcome was not different in M2 versus M1 occlusions (70.2% vs 69.7%, p=0.946). In a logistic regression model adjusted for age, sex, and baseline National Institutes of Health Stroke Scale score, M2 occlusions did not have a significantly different odds of good outcome compared with M1 occlusions (OR 0.94, 95% CI 0.47 to 1.88, p=0.87).ConclusionIn ARISE II, M2 occlusions achieved a 70.2% rate of good outcome at 90 days, which is above published rates for untreated M2 occlusions and superior to prior reports of M2 occlusions treated with endovascular thrombectomy. We also report similar rates of good outcome, successful reperfusion, death, and other adverse events when comparing the M1 and M2 occlusions.


Sign in / Sign up

Export Citation Format

Share Document