scholarly journals A whole genome atlas of 81 Psilocybe genomes as a resource for psilocybin production.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 961
Author(s):  
Kevin McKernan ◽  
Liam Kane ◽  
Yvonne Helbert ◽  
Lei Zhang ◽  
Nathan Houde ◽  
...  

The Psilocybe genus is well known for the synthesis of valuable psychoactive compounds such as Psilocybin, Psilocin, Baeocystin and Aeruginascin. The ubiquity of Psilocybin synthesis in Psilocybe has been attributed to a horizontal gene transfer mechanism of a ~20Kb gene cluster. A recently published highly contiguous reference genome derived from long read single molecule sequencing has underscored interesting variation in this Psilocybin synthesis gene cluster. This reference genome has also enabled the shotgun sequencing of spores from many Psilocybe strains to better catalog the genomic diversity in the Psilocybin synthesis pathway. Here we present the de novo assembly of 81 Psilocybe genomes compared to the P.envy reference genome. Surprisingly, the genomes of Psilocybe galindoi, Psilocybe tampanensis and Psilocybe azurescens lack sequence coverage over the previously described Psilocybin synthesis pathway but do demonstrate amino acid sequence homology to a less contiguous gene cluster and may illuminate the previously proposed evolution of psilocybin synthesis.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 961
Author(s):  
Kevin McKernan ◽  
Liam Kane ◽  
Yvonne Helbert ◽  
Lei Zhang ◽  
Nathan Houde ◽  
...  

The Psilocybe genus is well known for the synthesis of valuable psychoactive compounds such as Psilocybin, Psilocin, Baeocystin and Aeruginascin. The ubiquity of Psilocybin synthesis in Psilocybe has been attributed to a horizontal gene transfer mechanism of a ~20Kb gene cassette. A recently published highly contiguous reference genome derived from long read single molecule sequencing has underscored interesting variation in this Psilocybin synthesis gene cassette. This reference genome has also enabled the shotgun sequencing of spores from many Psilocybe strains to better catalog the genomic diversity in the Psilocybin synthesis pathway. Here we present the de novo assembly of genomes of 81 Psilocybe genomes compared to the P.envy reference genome. Surprisingly, the genomes of Psilocybe galindoi, Psilocybe tampanensis and Psilocybe azurescens lack sequence coverage over the previously described Psilocybin synthesis pathway but do demonstrate amino acid sequence homology to an alternative pathway and may illuminate previously proposed convergent evolution of Psilocybin synthesis.


GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Benjamin D Rosen ◽  
Derek M Bickhart ◽  
Robert D Schnabel ◽  
Sergey Koren ◽  
Christine G Elsik ◽  
...  

Abstract Background Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10–12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. Results We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use. Conclusions We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species.


2021 ◽  
Author(s):  
Pei Wu ◽  
Chao Liu ◽  
Ou Wang ◽  
Xia Zhao ◽  
Fang Chen ◽  
...  

AbstractIn this paper, we report a pipeline, AsmMix, which is capable of producing both contiguous and high-quality diploid genomes. The pipeline consists of two steps. In the first step, two sets of assemblies are generated: one is based on co-barcoded reads, which are highly accurate and haplotype-resolved but contain many gaps, the other assembly is based on single-molecule sequencing reads, which is contiguous but error-prone. In the second step, those two sets of assemblies are compared and integrated into a haplotype-resolved assembly with fewer errors. We test our pipeline using a dataset of human genome NA24385, perform variant calling from those assemblies and then compare against GIAB Benchmark. We show that AsmMix pipeline could produce highly contiguous, accurate, and haplotype-resolved assemblies. Especially the assembly mixing process could effectively reduce small-scale errors in the long read assembly.


2019 ◽  
Author(s):  
Sanjit Singh Batra ◽  
Michal Levy-Sakin ◽  
Jacqueline Robinson ◽  
Joseph Guillory ◽  
Steffen Durinck ◽  
...  

ABSTRACTBesides macaques, baboons are the most commonly used nonhuman primate in biomedical research. Despite this importance, the genomic resources for baboons are quite limited. In particular, the current baboon reference genome Panu_3.0 is a highly fragmented, reference-guided (i.e., not fully de novo) assembly, and its poor quality inhibits our ability to conduct downstream genomic analyses. Here we present a truly de novo genome assembly of the olive baboon (Papio anubis) that uses data from several recently developed single-molecule technologies. Our assembly, Panubis1.0, has an N50 contig size of ~1.46 Mb (as opposed to 139 Kb for Panu_3.0), and has single scaffolds that span each of the 20 autosomes and the X chromosome. We highlight multiple lines of evidence (including Bionano Genomics data, pedigree linkage information, and linkage disequilibrium data) suggesting that there are several large assembly errors in Panu_3.0, which have been corrected in Panubis1.0.


2021 ◽  
Author(s):  
Ying Chen ◽  
Jiajun Qiu ◽  
Yingwei Wu ◽  
Huan Jia ◽  
Yi Jiang ◽  
...  

Abstract BackgroundPOU3F4 is the causative gene for X-linked deafness-2 (DFNX2), characterized by incomplete partition type III (IP-III) malformation of the inner ear. The aim of this study was to investigate the clinical characteristics and molecular findings by Sanger or Nanopore single-molecule sequencing in IP-III patients. MethodsDiagnosis of IP-III was mainly based on clinical characteristics including radiological and audiological findings. Sanger sequencing of POU3F4 were carried out for these IP-III patients. For those patients with negative results for POU3F4 Sanger sequencing, Nanopore long-read single-molecule sequencing was used to identify the possible pathogenic variants. Hearing intervention outcomes of hearing aids fitting and cochlear implantation were also analyzed. Grouped by different locations of POU3F4 variants, aided PTA was further compared between patients in whom the variants located in the exon region or in the upstream region.ResultsIn total, 18 male patients from 14 unrelated families were diagnosed with IP-III. 10 variants were identified in POU3F4 by Sanger sequencing and 9 of these were novel (p.Val321Gly, p.Gln181*, p.Cys233*, p.Val215Gly, p.Arg282Gln, p.Trp57*, p.Gln316*, c.903_912 delins TGCCA and p.Arg205del). Four different deletions (DELs) that varied from 80 to 486 kb were identified 876-1503 kb upstream of POU3F4 by Nanopore long-read single-molecule sequencing. Of them, de novo genetic mutations occurred in 21.4% (3/14) of patients with POU3F4 mutations. Of these 18 patients, 7 had bilateral hearing aids (HAs) and 10 patients received unilateral cochlear implantation (CI). The mean aided pure tone average (PTA) for HAs and CI users were 41.1±5.18 and 40.3±7.59 dB HL respectively. The mean PTAs for whom the variants located in the exon and upstream regions were 39.6±6.31 vs 43.0±7.10 dB HL, which presented no significant difference (p=0.342).ConclusionsAmong IP-III patients, 28.6% (4/14) had no definite mutation in exon region of POU3F4, however, possible pathogenic deletions were identified in upstream region of this gen. De novo genetic mutations occurred in 21.4% (3/14) of patients with POU3F4 mutation. Hearing intervention outcomes of IP-III patients presented no difference regardless of the variants locations on exon or upstream regions.


2014 ◽  
Author(s):  
Konstantin Berlin ◽  
Sergey Koren ◽  
Chen-Shan Chin ◽  
James Drake ◽  
Jane M Landolin ◽  
...  

We report reference-grade de novo assemblies of four model organisms and the human genome from single-molecule, real-time (SMRT) sequencing. Long-read SMRT sequencing is routinely used to finish microbial genomes, but the available assembly methods have not scaled well to larger genomes. Here we introduce the MinHash Alignment Process (MHAP) for efficient overlapping of noisy, long reads using probabilistic, locality-sensitive hashing. Together with Celera Assembler, MHAP was used to reconstruct the genomes of Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, and human from high-coverage SMRT sequencing. The resulting assemblies include fully resolved chromosome arms and close persistent gaps in these important reference genomes, including heterochromatic and telomeric transition sequences. For D. melanogaster, MHAP achieved a 600-fold speedup relative to prior methods and a cloud computing cost of a few hundred dollars. These results demonstrate that single-molecule sequencing alone can produce near-complete eukaryotic genomes at modest cost.


2018 ◽  
Author(s):  
Jay Ghurye ◽  
Sergey Koren ◽  
Scott T Small ◽  
Seth Redmond ◽  
Paul Howell ◽  
...  

Background: Anopheles funestus is one of the three most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito. Findings: Here we present a new high-quality An. funestus reference genome (AfunF3) assembled using 240x coverage of long-read single-molecule sequencing for contigging, combined with 100x coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1. Conclusion: This highly contiguous and complete An. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009078
Author(s):  
Jingwen Ren ◽  
Mark J. P. Chaisson

It is computationally challenging to detect variation by aligning single-molecule sequencing (SMS) reads, or contigs from SMS assemblies. One approach to efficiently align SMS reads is sparse dynamic programming (SDP), where optimal chains of exact matches are found between the sequence and the genome. While straightforward implementations of SDP penalize gaps with a cost that is a linear function of gap length, biological variation is more accurately represented when gap cost is a concave function of gap length. We have developed a method, lra, that uses SDP with a concave-cost gap penalty, and used lra to align long-read sequences from PacBio and Oxford Nanopore (ONT) instruments as well as de novo assembly contigs. This alignment approach increases sensitivity and specificity for SV discovery, particularly for variants above 1kb and when discovering variation from ONT reads, while having runtime that are comparable (1.05-3.76×) to current methods. When applied to calling variation from de novo assembly contigs, there is a 3.2% increase in Truvari F1 score compared to minimap2+htsbox. lra is available in bioconda (https://anaconda.org/bioconda/lra) and github (https://github.com/ChaissonLab/LRA).


2016 ◽  
Author(s):  
Scott L. Allen ◽  
Emily K. Delaney ◽  
Artyom Kopp ◽  
Stephen F. Chenoweth

ABSTRACTLong read sequencing technology promises to greatly enhancede novoassembly of genomes for non-model species. While error rates have been a large stumbling block, sequencing at high coverage allows reads to be self-corrected. Here we sequence andde novoassemble the genome ofDrosophila serrata, a non-model species from themontiumsubgroup that has been well studied for clines and sexual selection. Using 11 PacBio SMRT cells, we generated 12 Gbp of raw sequence data comprising approximately 65x whole genome coverage. Read lengths averaged 8,940 bp (NRead50 12,200) with the longest read at 53 Kbp. We self-corrected reads using the PBDagCon algorithm and assembled the genome using the MHAP algorithm within the PBcR assembler. Total genome length was 198 Mbp with an N50 just under 1 Mbp. Contigs displayed a high degree of arm-level conservation withD. melanogaster. We also provide an initial annotation for this genome usingin silicogene predictions that were supported by RNA-seq data.


2020 ◽  
Author(s):  
Jingwen Ren ◽  
Mark JP Chaisson

AbstractMotivationIt is computationally challenging to detect variation by aligning long reads from single-molecule sequencing (SMS) instruments, or megabase-scale contigs from SMS assemblies. One approach to efficiently align long sequences is sparse dynamic programming (SDP), where exact matches are found between the sequence and the genome, and optimal chains of matches are found representing a rough alignment. Sequence variation is more accurately modeled when alignments are scored with a gap penalty that is a convex function of the gap length. Because previous implementations of SDP used a linear-cost gap function that does not accurately model variation, and implementations of alignment that have a convex gap penalty are either inefficient or use heuristics, we developed a method, lra, that uses SDP with a convex-cost gap penalty. We use lra to align long-read sequences from PacBio and Oxford Nanopore (ONT) instruments as well as de novo assembly contigs.ResultsAcross all data types, the runtime of lra is between 52-168% of the state of the art aligner minimap2 when generating SAM alignment, and 9-15% of an alternative method, ngmlr. This alignment approach may be used to provide additional evidence of SV calls in PacBio datasets, and an increase in sensitivity and specificity on ONT data with current SV detection algorithms. The number of calls discovered using pbsv with lra alignments are within 98.3-98.6% of calls made from minimap2 alignments on the same data, and give a nominal 0.2-0.4% increase in F1 score by Truvari analysis. On ONT data with SV called using Sniffles, the number of calls made from lra alignments is 3% greater than minimap2-based calls, and 30% greater than ngmlr based calls, with a 4.6-5.5% increase in Truvari F1 score. When applied to calling variation from de novo assembly contigs, there is a 5.8% increase in SV calls compared to minimap2+paftools, with a 4.3% increase in Truvari F1 score.Availability and implementationAvailable in bioconda: https://anaconda.org/bioconda/lra and github: https://github.com/ChaissonLab/[email protected], [email protected]


Sign in / Sign up

Export Citation Format

Share Document