scholarly journals De novo assembly of the cattle reference genome with single-molecule sequencing

GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Benjamin D Rosen ◽  
Derek M Bickhart ◽  
Robert D Schnabel ◽  
Sergey Koren ◽  
Christine G Elsik ◽  
...  

Abstract Background Major advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10–12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies. Results We present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250× more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use. Conclusions We demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhixiong Zhou ◽  
Bo Liu ◽  
Baohua Chen ◽  
Yue Shi ◽  
Fei Pu ◽  
...  

Abstract Takifugu bimaculatus is a native teleost species of the southeast coast of China where it has been cultivated as an important edible fish in the last decade. Genetic breeding programs, which have been recently initiated for improving the aquaculture performance of T. bimaculatus, urgently require a high-quality reference genome to facilitate genome selection and related genetic studies. To address this need, we produced a chromosome-level reference genome of T. bimaculatus using the PacBio single molecule sequencing technique (SMRT) and High-through chromosome conformation capture (Hi-C) technologies. The genome was assembled into 2,193 contigs with a total length of 404.21 Mb and a contig N50 length of 1.31 Mb. After chromosome-level scaffolding, 22 chromosomes with a total length of 371.68 Mb were constructed. Moreover, a total of 21,117 protein-coding genes and 3,471 ncRNAs were annotated in the reference genome. The highly accurate, chromosome-level reference genome of T. bimaculatus provides an essential genome resource for not only the genome-scale selective breeding of T. bimaculatus but also the exploration of the evolutionary basis of the speciation and local adaptation of the Takifugu genus.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 961
Author(s):  
Kevin McKernan ◽  
Liam Kane ◽  
Yvonne Helbert ◽  
Lei Zhang ◽  
Nathan Houde ◽  
...  

The Psilocybe genus is well known for the synthesis of valuable psychoactive compounds such as Psilocybin, Psilocin, Baeocystin and Aeruginascin. The ubiquity of Psilocybin synthesis in Psilocybe has been attributed to a horizontal gene transfer mechanism of a ~20Kb gene cluster. A recently published highly contiguous reference genome derived from long read single molecule sequencing has underscored interesting variation in this Psilocybin synthesis gene cluster. This reference genome has also enabled the shotgun sequencing of spores from many Psilocybe strains to better catalog the genomic diversity in the Psilocybin synthesis pathway. Here we present the de novo assembly of 81 Psilocybe genomes compared to the P.envy reference genome. Surprisingly, the genomes of Psilocybe galindoi, Psilocybe tampanensis and Psilocybe azurescens lack sequence coverage over the previously described Psilocybin synthesis pathway but do demonstrate amino acid sequence homology to a less contiguous gene cluster and may illuminate the previously proposed evolution of psilocybin synthesis.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuchen Yang ◽  
Minghui Kang ◽  
Yanting Yang ◽  
Haifeng Xiong ◽  
Mingcheng Wang ◽  
...  

AbstractThe deciduous Chinese tupelo (Nyssa sinensis Oliv.) is a popular ornamental tree for the spectacular autumn leaf color. Here, using single-molecule sequencing and chromosome conformation capture data, we report a high-quality, chromosome-level genome assembly of N. sinensis. PacBio long reads were de novo assembled into 647 polished contigs with a total length of 1,001.42 megabases (Mb) and an N50 size of 3.62 Mb, which is in line with genome sizes estimated using flow cytometry and the k-mer analysis. These contigs were further clustered and ordered into 22 pseudo-chromosomes based on Hi-C data, matching the chromosome counts in Nyssa obtained from previous cytological studies. In addition, a total of 664.91 Mb of repetitive elements were identified and a total of 37,884 protein-coding genes were predicted in the genome of N. sinensis. All data were deposited in publicly available repositories, and should be a valuable resource for genomics, evolution, and conservation biology.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009078
Author(s):  
Jingwen Ren ◽  
Mark J. P. Chaisson

It is computationally challenging to detect variation by aligning single-molecule sequencing (SMS) reads, or contigs from SMS assemblies. One approach to efficiently align SMS reads is sparse dynamic programming (SDP), where optimal chains of exact matches are found between the sequence and the genome. While straightforward implementations of SDP penalize gaps with a cost that is a linear function of gap length, biological variation is more accurately represented when gap cost is a concave function of gap length. We have developed a method, lra, that uses SDP with a concave-cost gap penalty, and used lra to align long-read sequences from PacBio and Oxford Nanopore (ONT) instruments as well as de novo assembly contigs. This alignment approach increases sensitivity and specificity for SV discovery, particularly for variants above 1kb and when discovering variation from ONT reads, while having runtime that are comparable (1.05-3.76×) to current methods. When applied to calling variation from de novo assembly contigs, there is a 3.2% increase in Truvari F1 score compared to minimap2+htsbox. lra is available in bioconda (https://anaconda.org/bioconda/lra) and github (https://github.com/ChaissonLab/LRA).


PLoS Biology ◽  
2018 ◽  
Vol 16 (7) ◽  
pp. e2006348 ◽  
Author(s):  
Shivani Mahajan ◽  
Kevin H.-C. Wei ◽  
Matthew J. Nalley ◽  
Lauren Gibilisco ◽  
Doris Bachtrog

2017 ◽  
Vol 14 (11) ◽  
pp. 1072-1074 ◽  
Author(s):  
Chuan-Le Xiao ◽  
Ying Chen ◽  
Shang-Qian Xie ◽  
Kai-Ning Chen ◽  
Yan Wang ◽  
...  

2012 ◽  
Vol 30 (7) ◽  
pp. 693-700 ◽  
Author(s):  
Sergey Koren ◽  
Michael C Schatz ◽  
Brian P Walenz ◽  
Jeffrey Martin ◽  
Jason T Howard ◽  
...  

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 961
Author(s):  
Kevin McKernan ◽  
Liam Kane ◽  
Yvonne Helbert ◽  
Lei Zhang ◽  
Nathan Houde ◽  
...  

The Psilocybe genus is well known for the synthesis of valuable psychoactive compounds such as Psilocybin, Psilocin, Baeocystin and Aeruginascin. The ubiquity of Psilocybin synthesis in Psilocybe has been attributed to a horizontal gene transfer mechanism of a ~20Kb gene cassette. A recently published highly contiguous reference genome derived from long read single molecule sequencing has underscored interesting variation in this Psilocybin synthesis gene cassette. This reference genome has also enabled the shotgun sequencing of spores from many Psilocybe strains to better catalog the genomic diversity in the Psilocybin synthesis pathway. Here we present the de novo assembly of genomes of 81 Psilocybe genomes compared to the P.envy reference genome. Surprisingly, the genomes of Psilocybe galindoi, Psilocybe tampanensis and Psilocybe azurescens lack sequence coverage over the previously described Psilocybin synthesis pathway but do demonstrate amino acid sequence homology to an alternative pathway and may illuminate previously proposed convergent evolution of Psilocybin synthesis.


Sign in / Sign up

Export Citation Format

Share Document