linkage information
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 27)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chenhui Ma ◽  
Abdul Rehman ◽  
Hong Ge Li ◽  
Zi Bo Zhao ◽  
Gaofei Sun ◽  
...  

Abstract Background Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a 60Co γ treated upland cotton semi-dwarf mutant Ari1327. Results Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80–9.66 Mb at D01 chromosome in two F2 populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring’s phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information. Conclusions Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.


2021 ◽  
Vol 11 (8) ◽  
pp. 804
Author(s):  
Navid Neyshaburinezhad ◽  
Hengameh Ghasim ◽  
Mohammadreza Rouini ◽  
Youssef Daali ◽  
Yalda H. Ardakani

Genetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized drug therapy and healthcare programs. To provide a meta-analysis of CYP allele polymorphisms with clinical importance, we brought together whole-genome and exome sequencing data from 800 unrelated individuals of Iranian population (100 subjects from 8 major ethnics of Iran) and 63,269 unrelated individuals of five major human populations (EUR, AMR, AFR, EAS and SAS). By integrating these datasets with population-specific linkage information, we evolved the frequencies of 140 CYP haplotypes related to 9 important CYP450 isoenzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) giving a large resource for major genetic determinants of drug metabolism. Furthermore, we evaluated the more frequent Iranian alleles and compared the dataset with the Caucasian race. Finally, the similarity of the Iranian population SNVs with other populations was investigated.


2021 ◽  
Author(s):  
Caoqi Fan ◽  
Nicholas Mancuso ◽  
Charleston W.K. Chiang

The application of genetic relationships among individuals, characterized by a genetic relationship matrix (GRM), has far-reaching effects in human genetics. However, the current standard to calculate the GRM generally does not take advantage of linkage information and does not reflect the underlying genealogical history of the study sample. Here, we propose a coalescent-informed framework to infer the expected relatedness between pairs of individuals given an ancestral recombination graph (ARG) of the sample. Through extensive simulations we show that the eGRM is an unbiased estimate of latent pairwise genome-wide relatedness and is robust when computed using genealogies inferred from incomplete genetic data. As a result, the eGRM better captures the structure of a population than the canonical GRM, even when using the same genetic information. More importantly, our framework allows a principled approach to estimate the eGRM at different time depths of the ARG, thereby revealing the time-varying nature of population structure in a sample. When applied to genotyping data from a population sample from Northern and Eastern Finland, we find that clustering analysis using the eGRM reveals population structure driven by subpopulations that would not be apparent using the canonical GRM, and that temporally the population model is consistent with recent divergence and expansion. Taken together, our proposed eGRM provides a robust tree-centric estimate of relatedness with wide application to genetic studies.


2021 ◽  
Author(s):  
Brendan J. Pinto ◽  
Shannon E Keating ◽  
Stuart V Nielsen ◽  
Daniel P Scantlebury ◽  
Juan D Daza ◽  
...  

Sex chromosomes have evolved many times across eukaryotes, indicating both their importance and their evolutionary flexibility. Some vertebrate groups, such as mammals and birds, have maintained a single, conserved sex chromosome system across long evolutionary time periods. By contrast, many reptiles, amphibians, and fish have undergone frequent sex chromosome transitions, most of which remain to be catalogued. Among reptiles, gecko lizards (infraorder Gekkota) have shown an exceptional lability with regard to sex chromosome transitions and may possess the majority of transitions within squamates (lizards and snakes). However—across geckos—information about sex chromosome linkage is expressly lacking, leaving large gaps in our understanding of the evolutionary processes at play in this system. To address this gap, we assembled the first chromosome-level genome for a gecko and use this linkage information to survey six Sphaerodactylus species using a variety of genomic data, including whole-genome re-sequencing, RADseq, and RNAseq. Previous work has identified XY systems in two species of Sphaerodactylus geckos. We expand upon that work to identify between two and four sex chromosome cis-transitions (XY to XY) within the genus. Interestingly, we confirmed two linkage groups as XY sex chromosome systems that were previously unknown to act as sex chromosomes in tetrapods (syntenic with Gallus 3 and Gallus 18/30/33). We highlight the increasing evidence that most (if not all) linkage groups will likely be identified as a sex chromosome in future studies given thorough enough sampling.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4679
Author(s):  
Yoon-Su Jeong

As IoT (Internet of Things) devices are diversified in the fields of use (manufacturing, health, medical, energy, home, automobile, transportation, etc.), it is becoming important to analyze and process data sent and received from IoT devices connected to the Internet. Data collected from IoT devices is highly dependent on secure storage in databases located in cloud environments. However, storing directly in a database located in a cloud environment makes it not only difficult to directly control IoT data, but also does not guarantee the integrity of IoT data due to a number of hazards (error and error handling, security attacks, etc.) that can arise from natural disasters and management neglect. In this paper, we propose an optimized hash processing technique that enables hierarchical distributed processing with an n-bit-size blockchain to minimize the loss of data generated from IoT devices deployed in distributed cloud environments. The proposed technique minimizes IoT data integrity errors as well as strengthening the role of intermediate media acting as gateways by interactively authenticating blockchains of n bits into n + 1 and n − 1 layers to normally validate IoT data sent and received from IoT data integrity errors. In particular, the proposed technique ensures the reliability of IoT information by validating hash values of IoT data in the process of storing index information of IoT data distributed in different locations in a blockchain in order to maintain the integrity of the data. Furthermore, the proposed technique ensures the linkage of IoT data by allowing minimal errors in the collected IoT data while simultaneously grouping their linkage information, thus optimizing the load balance after hash processing. In performance evaluation, the proposed technique reduced IoT data processing time by an average of 2.54 times. Blockchain generation time improved on average by 17.3% when linking IoT data. The asymmetric storage efficiency of IoT data according to hash code length is improved by 6.9% on average over existing techniques. Asymmetric storage speed according to the hash code length of the IoT data block was shown to be 10.3% faster on average than existing techniques. Integrity accuracy of IoT data is improved by 18.3% on average over existing techniques.


2021 ◽  
Vol 118 (28) ◽  
pp. e2106786118
Author(s):  
Darui Xu ◽  
Stephen Lyon ◽  
Chun Hui Bu ◽  
Sara Hildebrand ◽  
Jin Huk Choi ◽  
...  

Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation–phenotype association. At this time, CE has evaluated putative mutation–phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus. The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.


2021 ◽  
Vol 118 (25) ◽  
pp. e2015005118
Author(s):  
Joana I. Meier ◽  
Patricio A. Salazar ◽  
Marek Kučka ◽  
Robert William Davies ◽  
Andreea Dréau ◽  
...  

Genetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies. Here, we present “haplotagging,” a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species, the geographic clines for the major wing-pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the center of the hybrid zone. We propose that shared warning signaling (Müllerian mimicry) may couple the cline shifts seen in both species and facilitate the parallel coemergence of a novel hybrid morph in both comimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ya Chen ◽  
Hongliang Yuan ◽  
Tingting Liu ◽  
Nan Ding

Recently, massive online academic resources have provided convenience for scientific study and research. However, the author name ambiguity degrades the user experience in retrieving the literature bases. Extracting the features of papers and calculating the similarity for clustering constitute the mainstream of present name disambiguation approaches, which can be divided into two branches: clustering based on attribute features and clustering based on linkage information. They cannot however get high performance. In order to improve the efficiency of literature retrieval and provide technical support for the accurate construction of literature bases, a name disambiguation method based on Graph Convolutional Network (GCN) is proposed. The disambiguation model based on GCN designed in this paper combines both attribute features and linkage information. We first build paper-to-paper graphs, coauthor graphs, and paper-to-author graphs for each reference item of a name. The nodes in the graphs contain attribute features and the edges contain linkage features. The graphs are then fed to a specialized GCN and output a hybrid representation. Finally, we use the hierarchical clustering algorithm to divide the papers into disjoint clusters. Finally, we cluster the papers using a hierarchical algorithm. The experimental results show that the proposed model achieves average F1 value of 77.10% on three name disambiguation datasets. In order to let the model automatically select the appropriate number of convolution layers and adapt to the structure of different local graphs, we improve upon the prior GCN model by utilizing attention mechanism. Compared with the original GCN model, it increases the average precision and F1 value by 2.05% and 0.63%, respectively. What is more, we build a bilingual dataset, BAT, which contains various forms of academic achievements and will be an alternative in future research of name disambiguation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weihua Pan ◽  
Desheng Gong ◽  
Da Sun ◽  
Haohui Luo

AbstractDue to the high complexity of cancer genome, it is too difficult to generate complete cancer genome map which contains the sequence of every DNA molecule until now. Nevertheless, phasing each chromosome in cancer genome into two haplotypes according to germline mutations provides a suboptimal solution to understand cancer genome. However, phasing cancer genome is also a challenging problem, due to the limit in experimental and computational technologies. Hi-C data is widely used in phasing in recent years due to its long-range linkage information and provides an opportunity for solving the problem of phasing cancer genome. The existing Hi-C based phasing methods can not be applied to cancer genome directly, because the somatic mutations in cancer genome such as somatic SNPs, copy number variations and structural variations greatly reduce the correctness and completeness. Here, we propose a new Hi-C based pipeline for phasing cancer genome called HiCancer. HiCancer solves different kinds of somatic mutations and variations, and take advantage of allelic copy number imbalance and linkage disequilibrium to improve the correctness and completeness of phasing. According to our experiments in K562 and KBM-7 cell lines, HiCancer is able to generate very high-quality chromosome-level haplotypes for cancer genome with only Hi-C data.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Renee M. Happs ◽  
Bennett Addison ◽  
Crissa Doeppke ◽  
Bryon S. Donohoe ◽  
Mark F. Davis ◽  
...  

Abstract Background Multiple analytical methods have been developed to determine the ratios of aromatic lignin units, particularly the syringyl/guaiacyl (S/G) ratio, of lignin biopolymers in plant cell walls. Chemical degradation methods such as thioacidolysis produce aromatic lignin units that are released from certain linkages and may induce chemical changes rendering it difficult to distinguish and determine the source of specific aromatic lignin units released, as is the case with nitrobenzene oxidation methodology. NMR methods provide powerful tools used to analyze cell walls for lignin composition and linkage information. Pyrolysis-mass spectrometry methods are also widely used, particularly as high-throughput methodologies. However, the different techniques used to analyze aromatic lignin unit ratios frequently yield different results within and across particular studies, making it difficult to interpret and compare results. This also makes it difficult to obtain meaningful insights relating these measurements to other characteristics of plant cell walls that may impact biomass sustainability and conversion metrics for the production of bio-derived fuels and chemicals. Results The authors compared the S/G lignin unit ratios obtained from thioacidolysis, pyrolysis-molecular beam mass spectrometry (py-MBMS), HSQC liquid-state NMR and solid-state (ss) NMR methodologies of pine, several genotypes of poplar, and corn stover biomass. An underutilized approach to deconvolute ssNMR spectra was implemented to derive S/G ratios. The S/G ratios obtained for the samples did not agree across the different methods, but trends were similar with the most agreement among the py-MBMS, HSQC NMR and deconvoluted ssNMR methods. The relationship between S/G, thioacidolysis yields, and linkage analysis determined by HSQC is also addressed. Conclusions This work demonstrates that different methods using chemical, thermal, and non-destructive NMR techniques to determine native lignin S/G ratios in plant cell walls may yield different results depending on species and linkage abundances. Spectral deconvolution can be applied to many hardwoods with lignin dominated by S and G units, but the results may not be reliable for some woody and grassy species of more diverse lignin composition. HSQC may be a better method for analyzing lignin in those species given the wealth of information provided on additional aromatic moieties and bond linkages. Additionally, trends or correlations in lignin characteristics such as S/G ratios and lignin linkages within the same species such as poplar may not necessarily exhibit the same trends or correlations made across different biomass types. Careful consideration is required when choosing a method to measure S/G ratios and the benefits and shortcomings of each method discussed here are summarized.


Sign in / Sign up

Export Citation Format

Share Document