scholarly journals Cost-effectiveness and public health impact of RTS,S/AS01E malaria vaccine in Malawi, using a Markov static model

2021 ◽  
Vol 5 ◽  
pp. 260
Author(s):  
Latif Ndeketa ◽  
Donnie Mategula ◽  
Dianne J. Terlouw ◽  
Naor Bar-Zeev ◽  
Christophe J. Sauboin ◽  
...  

Background: The RTS,S/AS01E malaria vaccine is being assessed in Malawi, Ghana and Kenya as part of a large-scale pilot implementation programme. Even if impactful, its incorporation into immunisation programmes will depend on demonstrating cost-effectiveness. We analysed the cost-effectiveness and public health impact of the RTS,S/AS01E malaria vaccine use in Malawi. Methods: We calculated the Incremental Cost Effectiveness Ratio (ICER) per disability-adjusted life year (DALY) averted by vaccination and compared it to Malawi’s mean per capita Gross Domestic Product. We used a previously validated Markov model, which simulated malaria progression in a 2017 Malawian birth cohort for 15 years. We used a 46% vaccine efficacy, 75% vaccine coverage, USD5 estimated cost per vaccine dose, published local treatment costs for clinical malaria and Malawi specific malaria indicators for interventions such as bed net and antimalarial use. We took a healthcare provider, household and societal perspective. Costs were discounted at 3% per year, no discounting was applied to DALYs. For public health impact, we calculated the DALYs, and malaria events averted. Results: The ICER/DALY averted was USD115 and USD109 for the health system perspective and societal perspective respectively, lower than GDP per capita of USD398.6 for Malawi. Sensitivity analyses exploring the impact of variation in vaccine costs, vaccine coverage rate and coverage of four doses showed vaccine implementation would be cost-effective across a wide range of different outcomes. RTS,S/AS01 was predicted to avert a median of 93,940 (range 20,490–126,540) clinical cases and 394 (127–708) deaths for the three-dose schedule, or 116,480 (31,450–160,410) clinical cases and 484 (189–859) deaths for the four-dose schedule, per 100 000 fully vaccinated children. Conclusions: We predict the introduction of the RTS,S/AS01 vaccine in the Malawian expanded programme of immunisation (EPI) likely to be highly cost effective.

2020 ◽  
Vol 5 ◽  
pp. 260
Author(s):  
Latif Ndeketa ◽  
Donnie Mategula ◽  
Dianne J. Terlouw ◽  
Naor Bar-Zeev ◽  
Christophe J. Sauboin ◽  
...  

Background: The RTS,S/AS01E malaria vaccine is being assessed in Malawi, Ghana and Kenya as part of a large-scale pilot implementation programme. Even if impactful, its incorporation into immunisation programmes will depend on demonstrating cost-effectiveness. We analysed the cost-effectiveness and public health impact of the RTS,S/AS01E malaria vaccine use in Malawi. Methods: We calculated the Incremental Cost Effectiveness Ratio (ICER) per disability-adjusted life year (DALY) averted by vaccination and compared it to Malawi’s mean per capita Gross Domestic Product. We used a previously validated Markov model, which simulated malaria progression in a 2017 Malawian birth cohort for 15 years. We used a 46% vaccine efficacy, 75% vaccine coverage, USD5 estimated cost per vaccine dose, published local treatment costs for clinical malaria and Malawi specific malaria indicators for interventions such as bed net and antimalarial use. We took a healthcare provider, household and societal perspective. Costs were discounted at 3% per year, no discounting was applied to DALYs. For public health impact, we calculated the DALYs, and malaria events averted. Results: The ICER/DALY averted was USD115 and USD109 for the health system perspective and societal perspective respectively, lower than GDP per capita of USD398.6 for Malawi. Sensitivity analyses exploring the impact of variation in vaccine costs, vaccine coverage rate and coverage of four doses showed vaccine implementation would be cost-effective across a wide range of different outcomes. RTS,S/AS01 was predicted to avert a median of 93,940 (range 20,490–126,540) clinical cases and 394 (127–708) deaths for the three-dose schedule, or 116,480 (31,450–160,410) clinical cases and 484 (189–859) deaths for the four-dose schedule, per 100 000 fully vaccinated children. Conclusions: We predict the introduction of the RTS,S/AS01 vaccine in the Malawian expanded programme of immunisation (EPI) likely to be highly cost effective.


The Lancet ◽  
2016 ◽  
Vol 387 (10016) ◽  
pp. 367-375 ◽  
Author(s):  
Melissa A Penny ◽  
Robert Verity ◽  
Caitlin A Bever ◽  
Christophe Sauboin ◽  
Katya Galactionova ◽  
...  

PLoS Medicine ◽  
2020 ◽  
Vol 17 (11) ◽  
pp. e1003377
Author(s):  
Alexandra B. Hogan ◽  
Peter Winskill ◽  
Azra C. Ghani

Background The RTS,S/AS01 vaccine against Plasmodium falciparum malaria infection completed phase III trials in 2014 and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5–17 months. Pilot vaccine implementation has recently begun in 3 African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may, however, outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling. Methods and findings Using a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0–5 years in sub-Saharan Africa under 2 scenarios for vaccine coverage (100% and realistic) and 2 scenarios for other interventions (current coverage and World Health Organization [WHO] Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains from prioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels—assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%—we estimate that 4.3 million malaria cases (95% credible interval [CrI] 2.8–6.8 million) and 22,000 deaths (95% CrI 11,000–35,000) in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million cases (95% CrI 2.0–4.7 million) and 14,000 deaths (95% CrI 7,000–23,000) at a dose constraint of 20 million, and increases to 6.6 million cases (95% CrI 4.2–10.8 million) and 38,000 deaths (95% CrI 18,000–61,000) at a dose constraint of 60 million. At 100% vaccine coverage, these impact estimates increase to 5.2 million cases (95% CrI 3.5–8.2 million) and 27,000 deaths (95% CrI 14,000–43,000), 3.9 million cases (95% CrI 2.7–6.0 million) and 19,000 deaths (95% CrI 10,000–30,000), and 10.0 million cases (95% CrI 6.7–15.7 million) and 51,000 deaths (95% CrI 25,000–82,000), respectively. Under realistic vaccine coverage, if the vaccine is prioritised sub-nationally, 5.3 million cases (95% CrI 3.5–8.2 million) and 24,000 deaths (95% CrI 12,000–38,000) could be averted at a dose constraint of 30 million. Furthermore, sub-national prioritisation would allow introduction in almost double the number of countries compared to national prioritisation (21 versus 11). If vaccine introduction is prioritised in the 3 pilot countries (Ghana, Kenya, and Malawi), health impact would be reduced, but this effect becomes less substantial (change of <5%) if 50 million or more doses are available. We did not account for within-country variation in vaccine coverage, and the optimisation was based on a single outcome measure, therefore this study should be used to understand overall trends rather than guide country-specific allocation. Conclusions These results suggest that the impact of constraints in vaccine supply on the public health impact of the RTS,S malaria vaccine could be reduced by introducing the vaccine at the sub-national level and prioritising countries with the highest malaria incidence.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Weiyi Ni ◽  
Jia Liu ◽  
Yawen Jiang ◽  
Jing Wu

Abstract Background Clinical trials in China have demonstrated that ranibizumab can improve the clinical outcomes of branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO). However, no economic evaluation of ranibizumab has been conducted among Chinese patient population. Methods To provide insights into the economic profile of ranibizumab among Chinese RVO population, a Markov state-transition model was used to predict the outcomes of ranibizumab comparing to laser photocoagulation and observational-only care from the societal perspective. This model simulated changes in patient visuality, quality-adjusted of life years (QALY), medical costs, and direct non-medical costs of individuals with visual impairment due to BRVO or CRVO in lifetime. The base-case analysis used an annual discount rate of 5% for costs and benefits following the China Guidelines for Pharmacoeconomic Evaluations. Deterministic and probabilistic sensitivity analyses were performed to test the robustness of the model. Results The base-case incremental cost-effectiveness ratio (ICER) comparing ranibizumab to laser photocoagulation was ¥65,008/QALY among BRVO patients and was ¥65,815/QALY among CRVO patients, respectively. Comparing to the 2019 gross domestic product (GDP) per capita of ¥71,000, both two ICERs were far below the cost-effective threshold at three times of GDP per capita (¥213,000). The deterministic and probabilistic sensitivity analyses demonstrated the base-case results were robust in most of the simulation scenarios. Conclusion The current Markov model demonstrated that ranibizumab may be cost-effective compared with laser photocoagulation to treat BRVO and cost-effective compared to observation-only care to treat CRVO in China from the societal perspective.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wail A. Hayajneh ◽  
Vincent J. Daniels ◽  
Cerise K. James ◽  
Muhammet Nabi Kanıbir ◽  
Matthew Pilsbury ◽  
...  

Following publication of the original article1, the authors noted the following:


2019 ◽  
Vol 13 (7) ◽  
pp. e0007482 ◽  
Author(s):  
Guido España ◽  
Yutong Yao ◽  
Kathryn B. Anderson ◽  
Meagan C. Fitzpatrick ◽  
David L. Smith ◽  
...  

2015 ◽  
Vol 18 (4) ◽  
pp. 358-367 ◽  
Author(s):  
Praveen Dhankhar ◽  
Chizoba Nwankwo ◽  
Matthew Pillsbury ◽  
Andreas Lauschke ◽  
Michelle G. Goveia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document