scholarly journals Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses

2021 ◽  
Vol 6 ◽  
pp. 134
Author(s):  
Gang Wu ◽  
Gavuthami Murugesan ◽  
Manjula Nagala ◽  
Alex McCraw ◽  
Stuart M. Haslam ◽  
...  

Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple ‘glycogenes’ that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.

2020 ◽  
Author(s):  
Gang Wu ◽  
Gavuthami Murugesan ◽  
Manjula Nagala ◽  
Alex McCraw ◽  
Stuart M. Haslam ◽  
...  

AbstractSiglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. It was shown previously to promote inflammation in autoimmune disease through suppressing the expansion of regulatory T cells (Tregs). We have investigated the molecular basis for Siglec-1 binding to these cells using in vitro-induced Tregs. Siglec-1 binding was strongly upregulated on activated cells, but lost under resting conditions. Glycosylation changes that affect Siglec-1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ∼5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors are upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3891-3891
Author(s):  
Zwi N. Berneman ◽  
Nathalie Cools ◽  
Viggo F.I. Van Tendeloo ◽  
Marc Lenjou ◽  
Griet Nijs ◽  
...  

Abstract Dendritic cells (DC), the professional antigen presenting cells of the immune system, exert important functions both in induction of T cell immunity as well as of tolerance. Previously, it was accepted that the main function of immature DC (iDC) in their in vivo steady state condition is to maintain peripheral tolerance to self-antigens and that these iDC mature upon encounter of so-called danger signals and subsequently promote T cell immunity. However, a growing body of experimental evidence now indicates that traditional DC maturation can no longer be used to distinguish between tolerogenic and immunogenic properties of DC. In this study, we compared the in vitro stimulatory capacity of immature DC (iDC), cytokine cocktail-matured DC (CC-mDC) and poly I:C-matured DC (pIC-mDC) in the absence and presence of antigen. All investigated DC types could induce at least 2 subsets of regulatory T cells. We observed a significant increase in both the number of functionally suppressive transforming growth factor (TGF)-beta+ interleukin (IL)-10+ T cells as well as of CD4+CD25+FOXP3+ T cells within DC/T cell co-cultures as compared to T cell cultures without DC. The induction of these regulatory T cells correlates with in vitro T cell non-responsiveness after co-culture with iDC and CC-mDC, while stimulation with pIC-mDC resulted in reproducible cytomegalovirus pp65 or influenza M1 matrix peptide-specific T cell activation as compared to control cultures in the absence of DC. In addition, the T cell non-responsiveness after stimulation with iDC was shown to be mediated by TGF-beta and IL-10. Moreover, the suppressive capacity of CD4+ T cells activated by iDC and CC-mDC was shown to be transferable when these CD4+ T cells were added to an established T cell response. In contrast, addition of CD4+ T cells stimulated by pIC-mDC made responder T cells refractory to their suppressive activity. In conclusion, we hypothesize that DC have a complementary role in inducing both regulatory T cells and effector T cells, where the final result of antigen-specific T cell activation will depend on the activation state of the DC. This emphasizes the need for proper DC activation when T cell immunity is the desired effect, especially when used in clinical trials.


2014 ◽  
Vol 143 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Lindsay E. Thueson ◽  
Tiffany R. Emmons ◽  
Dianna L. Browning ◽  
Joanna M. Kreitinger ◽  
David M. Shepherd ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 110-110
Author(s):  
Lequn Li ◽  
Rebecca Greenwald ◽  
Esther M. Lafuente ◽  
Dimitrios Tzachanis ◽  
Alla Berezovskaya ◽  
...  

Abstract Elucidating the mechanisms that regulate T cell activation and tolerance in vivo will provide insights into the maintenance of physiologic homeostasis and will facilitate development novel strategies for induction of transplantation tolerance. Transient activation of the small GTPase Rap1 is one of the physiologic consequences of TCR ligation and is mandatory for β1 and β2 integrin-mediated adhesion. In contrast, sustained increase of active Rap1 inhibits T cell activation and IL-2 transcription in vitro. In order to understand the role of Rap1 in the immune responses of the intact host we generated transgenic (Tg) mice, which express the active Rap1 mutant Rap1E63 in T cells. Rap1E63-Tg mice had no defects in thymocyte development or maturation. Rap1E63-Tg thymocytes were capable of activating Ras and Erk1/2 and, compared to wild type (WT) thymocytes, displayed enhanced LFA-1:ICAM-1-mediated adhesion and increased proliferation in response to anti-CD3. Surprisingly, although lymph node and splenic CD4+ cells from the Rap1E63-Tg mice also displayed increased LFA-1:ICAM-1-mediated adhesion, they had significantly impaired activation of Erk1/2 and dramatically reduced proliferation and IL-2 production in response to anti-CD3 and WT antigen presenting cells (APC). The defective responses of CD4+ T cells suggest that Rap1E63-Tg mice may have impaired helper function in vivo. To address this issue we immunized Rap1E63-Tg and WT mice with TNP-OVA, a T-cell dependent antigen. Total IgG, IgG1 and IgG2a were dramatically reduced, indicating that Rap1E63-Tg mice had a defect in immunoglobulin class switching, consistent with defective helper T cell-dependent B cell activation. Because these results suggest that Rap1E63-Tg CD4+ cells may have an anergic phenotype, we tested rechallenge responses. We immunized Rap1E63-Tg and WT mice with TNP-OVA in vivo and subsequently we rechallenged T cells in vitro with WT APC pulsed with OVA. Compared with WT, Rap1E63-Tg T cells had dramatically reduced proliferation, IFN- γ and IL-2 production on rechallenge, findings consistent with T cell anergy. Using suppression subtraction hybridization we determined that Rap1E63 induced mRNA expression of CD103, a marker that defines a potent subset of regulatory T cells (Treg). Strikingly, Rap1E63-Tg mice had a 5-fold increase of CD103+CD25+CD4+ Treg compared to WT mice. Rap1E63-Tg CD103+CD25+CD4+ Treg expressed the highest level of Foxp3 among all T cell subsets and had the most potent inhibitory effect on proliferation and IL-2 production when added into cultures of WT CD4+CD25− cells. Importantly, removal of the CD103+ cells significantly restored Erk1/2 activation, proliferation and IL-2 production of Rap1E63-Tg CD4+ T cells. Generation of CD103+ Treg occurs after thymic development and requires encounter of peripheral autoantigen. Consistent with this, differences in CD103+ Treg were detected only between lymph node and splenic cells and not between thymocytes from Rap1E63-Tg and WT mice. Since generation of CD103+ Treg depends on the strength of TCR signal, these results suggest that by enhancing adhesion, active Rap1 regulates the generation of Treg. Moreover, these results provide evidence that active Rap1 is a potent negative regulator of immune responses in vivo and have significant implications for the development of immune-based therapies geared towards tolerance induction.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 492-492 ◽  
Author(s):  
Katarina Luptakova ◽  
Brett Glotzbecker ◽  
Heidi Mills ◽  
Dina Stroopinsky ◽  
Baldev Vasir ◽  
...  

Abstract Abstract 492 Introduction: We have developed a cancer vaccine for multiple myeloma in which patient derived tumor cells are fused with dendritic cells (DCs) such that a broad array of tumor antigens are presented in the context of DC mediated costimulation. In clinical studies, we have demonstrated that vaccination results in the induction of anti-tumor immunity and disease response in a subset of patients. A fundamental challenge limiting the efficacy of cellular immunotherapy is the immunosuppressive milieu that characterizes patients with myeloma. We have previously reported that the PD-1/PDL-1 pathway plays an important role in suppressing T cell immunity in patients with myeloma, PD-1 expression is upregulated on T cells isolated from patients with multiple myeloma, and PD-1 blockade is associated with enhancement of T-cell response to the vaccine. Lenalidomide is a potent anti-myeloma agent whose activity may be linked, in part, to its immunomodulatory properties. We hypothesized that lenalidomide would augment the capacity to elicit anti-myeloma immunity. In our current study, we examined the effect of lenalidomide on T-cell activation and polarization, PD-1 signaling, and vaccine-induced responses in vitro. Methods and results: Peripheral blood mononuclear cells were cultured in media containing IL-2 with and without 1μM lenalidomide. The expression of cell surface molecules and intracellular cytokines was assessed using flow cytometry. Exposure of unstimulated T cells to lenalidomide resulted in a decrease in the percentage of CD4+ T cells expressing PD-1 (from 8.0% to 5.6%, p=0.04) and a 2 fold increase in T-cell proliferation as measured by incorporation of tritiated thymidine. We then examined the effect of lenalidomide on T cell activation by ligation of the costimulatory complex using antibodies directed against CD3 and anti CD28. Most notably, the upregulation of PD-1 by CD3/CD28 ligation was markedly decreased in the presence of lenalidomide as measured in CD4+ cells (from 26% to 15%, p<0.0001) and in CD8+ cells (from 16% to 10% p<0.01). Ligation of CD3/CD28 in the presence of lenalidomide resulted in greater degree of Th1 polarization as manifested by a 2 fold increase in the percentage of CD8+ T cells expressing IFNγ (p=0.02) and a decrease in the percentage of regulatory T-cells (CD4+CD25+FoxP3+) from 6.88% to 3.13% (p=0.02). In addition, the percentage of NK cells (CD3-CD56+) expressing IFNγ following CD3/CD28 ligation was 5-fold greater (p=0.03) in the presence of lenalidomide. Lastly, we studied the effect of lenalidomide on T-cells stimulated in vitro by the DC/myeloma fusion vaccine. DC/myeloma fusions were generated as previously described. Fusion mediated stimulation of autologous T cells in the presence of lenalidomide resulted in an increase in the percentage CD4+ and CD8+ T cells expressing IFNγ, (5.35% to 8.79%, p=0.06; and 6.37% to 9.85%, p=0.03, respectively). The proportion of regulatory T-cells decreased from 9.57% to 4.43% in the presence of lenalidomide (p<0.01). As with non-specific stimulation, PD-1 expression on CD4+ cells in the presence of lenalidomide decreased from 24% to 19%. In concert with these findings, exposure to lenalidomide resulted in increased cytotoxic T lymphocyte mediated lysis of autologous tumor targets (from 25% to 36%). Conclusions: In vitro exposure to lenalidomide results in enhanced T-cell activation in response to direct ligation of the co-stimulatory complex and stimulation by the DC/myeloma fusion vaccine. Exposure to lenalidomide suppresses T cell expression of PD-1 and expansion of regulatory T cells, 2 critical pathways responsible for tumor mediated immune suppression. To our knowledge, this is the first demonstration of an interaction between lenalidomide and the PD-1/PDL-1 pathway. These findings support the development of cellular immunotherapy in conjunction with lenalidomide, including its use with the DC/myeloma fusion vaccine. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 210 (6) ◽  
pp. 1069-1077 ◽  
Author(s):  
Jaehak Oh ◽  
Nan Wu ◽  
Günther Baravalle ◽  
Benjamin Cohn ◽  
Jessica Ma ◽  
...  

Membrane-associated RING-CH1 (MARCH1) is an E3 ubiquitin ligase that mediates ubiquitination of MHCII in dendritic cells (DCs). MARCH1-mediated MHCII ubiquitination in DCs is known to regulate MHCII surface expression, thereby controlling DC-mediated T cell activation in vitro. However, its role at steady state or in vivo is not clearly understood. Here, we show that MARCH1 deficiency resulted in a substantial reduction in the number of thymus-derived regulatory T cells (T reg cells) in mice. A specific ablation of MHCII ubiquitination also significantly reduced the number of thymic T reg cells. Indeed, DCs deficient in MARCH1 or MHCII ubiquitination both failed to generate antigen-specific T reg cells in vivo and in vitro, although both exhibited an increased capacity for antigen presentation in parallel with the increased surface MHCII. Thus, MARCH1-mediated MHCII ubiquitination in DCs is required for proper production of naturally occurring T reg cells, suggesting a role in balancing immunogenic and regulatory T cell development.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Nina Pilat ◽  
Benedikt Mahr ◽  
Martina Gattringer ◽  
Ulrike Baranyi ◽  
Thomas Wekerle

Blockade of the CD28:CD80/86 costimulatory pathway has been shown to be potent in blocking T cell activation in vitro and in vivo. The costimulation blocker CTLA4Ig has been approved for the treatment of autoimmune diseases and transplant rejection. The therapeutic application of regulatory T cells (Tregs) has recently gained much attention for its potential of improving allograft survival. However, neither costimulation blockade with CTLA4Ig nor Treg therapy induces robust tolerance on its own. Combining CTLA4Ig with Treg therapy would be an attractive approach for minimizing immunosuppression or for possibly achieving tolerance. However, since the CD28 pathway is more complex than initially thought, the question arose whether blocking CD80/86 would inadvertently impact immunological tolerance by interfering with Treg generation and function. We therefore wanted to investigate the compatibility of CTLA4Ig with regulatory T cells by evaluating direct effects of CTLA4Ig on murine Treg generation and function in vitro. For generation of polyclonal-induced Tregs, we utilized an APC-free in vitro system and added titrated doses of CTLA4Ig at different time points. Phenotypical characterization by flow cytometry and functional characterization in suppressor assays did not reveal negative effects by CTLA4Ig. The costimulation blocker CTLA4Ig does not impair but rather improves murine iTreg generation and suppressor function in vitro.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Colado ◽  
Esteban Enrique Elías ◽  
Valeria Judith Sarapura Martínez ◽  
Gregorio Cordini ◽  
Pablo Morande ◽  
...  

AbstractHypogammaglobulinemia is the most frequently observed immune defect in chronic lymphocytic leukemia (CLL). Although CLL patients usually have low serum levels of all isotypes (IgG, IgM and IgA), standard immunoglobulin (Ig) preparations for replacement therapy administrated to these patients contain more than 95% of IgG. Pentaglobin is an Ig preparation of intravenous application (IVIg) enriched with IgM and IgA (IVIgGMA), with the potential benefit to restore the Ig levels of all isotypes. Because IVIg preparations at high doses have well-documented anti-inflammatory and immunomodulatory effects, we aimed to evaluate the capacity of Pentaglobin and a standard IVIg preparation to affect leukemic and T cells from CLL patients. In contrast to standard IVIg, we found that IVIgGMA did not modify T cell activation and had a lower inhibitory effect on T cell proliferation. Regarding the activation of leukemic B cells through BCR, it was similarly reduced by both IVIgGMA and IVIgG. None of these IVIg preparations modified spontaneous apoptosis of T or leukemic B cells. However, the addition of IVIgGMA on in vitro cultures decreased the apoptosis of T cells induced by the BCL-2 inhibitor, venetoclax. Importantly, IVIgGMA did not impair venetoclax-induced apoptosis of leukemic B cells. Overall, our results add new data on the effects of different preparations of IVIg in CLL, and show that the IgM/IgA enriched preparation not only affects relevant mechanisms involved in CLL pathogenesis but also has a particular profile of immunomodulatory effects on T cells that deserves further investigation.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2396-2402 ◽  
Author(s):  
Anna Cambiaggi ◽  
Sylvie Darche ◽  
Sophie Guia ◽  
Philippe Kourilsky ◽  
Jean-Pierre Abastado ◽  
...  

In humans, a minor subset of T cells express killer cell Ig-like receptors (KIRs) at their surface. In vitro data obtained with KIR+ β and γδ T-cell clones showed that engagement of KIR molecules can extinguish T-cell activation signals induced via the CD3/T-cell receptor (TCR) complex. We analyzed the T-cell compartment in mice transgenic for KIR2DL3 (Tg-KIR2DL3), an inhibitory receptor for HLA-Cw3. As expected, mixed lymphocyte reaction and anti-CD3 monoclonal antibody (MoAb)-redirected cytotoxicity exerted by freshly isolated splenocytes can be inhibited by engagement of transgenic KIR2DL3 molecules. In contrast, antigen and anti-CD3 MoAb-induced cytotoxicity exerted by alloreactive cytotoxic T lymphocytes cannot be inhibited by KIR2DL3 engagement. In double transgenic mice, Tg-KIR2DL3 × Tg-HLA-Cw3, no alteration of thymic differentiation could be documented. Immunization of double transgenic mice with Hen egg white lysozime (HEL) or Pigeon Cytochrome-C (PCC) was indistinguishable from immunization of control mice, as judged by recall antigen-induced in vitro proliferation and TCR repertoire analysis. These results indicate that KIR effect on T cells varies upon cell activation stage and show unexpected complexity in the biological function of KIRs in vivo.


Sign in / Sign up

Export Citation Format

Share Document