scholarly journals MoOx Doped Single-Walled Carbon Nanotube Films as Hole Transport Layer for Organic Solar Cells

2017 ◽  
Vol 131 (3) ◽  
pp. 474-477 ◽  
Author(s):  
F. Çolak ◽  
Z. Dalkılıç ◽  
A. Tabatabaei ◽  
R. Atlıbatur ◽  
Ü. Çolak ◽  
...  
2019 ◽  
Vol 9 (21) ◽  
pp. 4721 ◽  
Author(s):  
Tom Grace ◽  
Hong Duc Pham ◽  
Christopher T. Gibson ◽  
Joseph G. Shapter ◽  
Prashant Sonar

The search for novel solar cell designs as an alternative to standard silicon solar cells is important for the future of renewable energy production. One such alternative design is the carbon nanotube/silicon (CNT/Si) heterojunction solar device. In order to improve the performance of large area CNT/Si heterojunction solar cells, a novel organic material, 4,10-bis(bis(4-methoxyphenyl)amino)naptho[7,8,1,2,3-nopqr]tetraphene-6,12-dione (DPA-ANT-DPA (shortened to DAD)), was added as an interlayer between the CNT film and the silicon surface. The interlayer was examined with SEM and AFM imaging to determine an optimal thickness for solar cell performance. The DAD was shown to improve the device performance with the efficiency of large area devices improving from 2.89% ± 0.40% to 3.34% ± 0.10%.


2010 ◽  
Vol 96 (24) ◽  
pp. 243309 ◽  
Author(s):  
Teresa M. Barnes ◽  
Jeremy D. Bergeson ◽  
Robert C. Tenent ◽  
Brian A. Larsen ◽  
Glenn Teeter ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


2012 ◽  
Vol 9 (5) ◽  
pp. 399-406
Author(s):  
Do Chung ◽  
Nguyen Dinh ◽  
Tran Thao ◽  
Nguyen Nam ◽  
Tran Trung ◽  
...  

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2 nanoparticles were prepared, respectively for the hole transport layer (HTL) and emission layer (EL) in Organic Light Emitting Diodes (OLED). The composite of MEH-PPV + nc-TiO2 was used for Organic Solar Cells (OCS). The results from the characterization of the properties of the nanocomposites and devices showed that electrical (I-V characteristics) and spectroscopic (photoluminescent) properties of the conjugate polymers were enhanced due to the incorporation of nc-TiO2 in the polymers. The OLEDs made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the OSC made from MEH-PPV + nc-TiO2 composite, the fill factor (FF) reached a value as high as 0.34. Under illumination of light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency (PEC) was found to be of 0.15% corresponding to an open circuit voltage VOC = 1.15 V and a short-cut circuit current density JSC = 0.125 mA/cm2.


2020 ◽  
Vol 5 (9) ◽  
pp. 2935-2944 ◽  
Author(s):  
Yuanbao Lin ◽  
Yuliar Firdaus ◽  
Furkan H. Isikgor ◽  
Mohamad Insan Nugraha ◽  
Emre Yengel ◽  
...  

2020 ◽  
Vol 12 (46) ◽  
pp. 52028-52037
Author(s):  
Haitao Xu ◽  
Helong Zou ◽  
Dan Zhou ◽  
Guang Zeng ◽  
Lie Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document