scholarly journals A description of relatively (p; r)-compact sets

2012 ◽  
Vol 16 (2) ◽  
pp. 227-232
Author(s):  
Kati Ain ◽  
Eve Oja

We introduce the notion of (p; r)-null sequences in a Banach space and we prove a Grothendieck-like result: a subset of a Banach space is relatively (p; r)-compact if and only if it is contained in the closed convex hull of a (p; r)-null sequence. This extends a recent description of relatively p-compact sets due to Delgado and Piñeiro, providing to it an alternative straightforward proof.

Author(s):  
KEVIN BEANLAND ◽  
RYAN M. CAUSEY

Abstract For 0 ≤ ξ ≤ ω1, we define the notion of ξ-weakly precompact and ξ-weakly compact sets in Banach spaces and prove that a set is ξ-weakly precompact if and only if its weak closure is ξ-weakly compact. We prove a quantified version of Grothendieck’s compactness principle and the characterisation of Schur spaces obtained in [7] and [9]. For 0 ≤ ξ ≤ ω1, we prove that a Banach space X has the ξ-Schur property if and only if every ξ-weakly compact set is contained in the closed, convex hull of a weakly null (equivalently, norm null) sequence. The ξ = 0 and ξ= ω1 cases of this theorem are the theorems of Grothendieck and [7], [9], respectively.


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.


2005 ◽  
Vol 71 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Pradipta Bandyopadhyay ◽  
S. Dutta

In this paper, we consider farthest points and the farthest distance map of a closed bounded set in a Banach space. We show, inter alia, that a strictly convex Banach space has the Mazur intersection property for weakly compact sets if and only if every such set is the closed convex hull of its farthest points, and recapture a classical result of Lau in a broader set-up. We obtain an expression for the subdifferential of the farthest distance map in the spirit of Preiss' Theorem which in turn extends a result of Westphal and Schwartz, showing that the subdifferential of the farthest distance map is the unique maximal monotone extension of a densely defined monotone operator involving the duality map and the farthest point map.


2020 ◽  
Vol 63 (2) ◽  
pp. 475-496
Author(s):  
T. A. Abrahamsen ◽  
R. Haller ◽  
V. Lima ◽  
K. Pirk

AbstractA Δ-point x of a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 from x. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations, x is a Daugavet point. A Banach space X has the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same in L1-spaces, in L1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the closed convex hull of its Δ-points. This gives rise to a new diameter-two property that we call the convex diametral diameter-two property. We show that all C(K) spaces, K infinite compact Hausdorff, as well as all Müntz spaces have this property. Moreover, we show that this property is stable under absolute sums.


Author(s):  
Richard Haydon

In a series of recent papers ((10), (9) and (11)) Rosenthal and Odell have given a number of characterizations of Banach spaces that contain subspaces isomorphic (that is, linearly homeomorphic) to the space l1 of absolutely summable series. The methods of (9) and (11) are applicable only in the case of separable Banach spaces and some of the results there were established only in this case. We demonstrate here, without the separability assumption, one of these characterizations:a Banach space B contains no subspace isomorphic to l1 if and only if every weak* compact convex subset of B* is the norm closed convex hull of its extreme points.


1996 ◽  
Vol 54 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R. Huotari ◽  
M.P. Prophet ◽  
J. Shi

We characterise the relative Chebyshev centre of a compact subsetFof a real Banach space in terms of the Gateaux derivative of the distance to farthest points. We present a relative-Chebyshev-centre characterisation of Hilbert space. In Hilbert space we show that the relative Chebyshev centre is in the closed convex hull of the metric projection ofF, and we estimate the relative Chebyshev radius ofF.


2014 ◽  
Vol 58 (2) ◽  
pp. 441-444
Author(s):  
Surjit Singh Khurana

AbstractLet (E, ℱ) be a weakly compactly generated Frechet space and let ℱ0 be another weaker Hausdorff locally convex topology on E. Let X be an ℱ-bounded compact subset of (E, ℱ0). The ℱ0-closed convex hull of X in E is then ℱ0-compact. We also give a new proof, without using Riemann–Lebesgue-integrable (Birkoff-integrable) functions, with the result that if (E, ∥ · ∥) is any Banach space and ℱ0 is fragmented by ∥ · ∥, then the same result holds. Furthermore, the closure of the convex hull of X in ℱ0-topology and in the original topology of E is the same.


Author(s):  
Abraham Rueda Zoca

AbstractGiven two metric spaces M and N we study, motivated by a question of N. Weaver, conditions under which a composition operator $$C_\phi :{\mathrm {Lip}}_0(M)\longrightarrow {\mathrm {Lip}}_0(N)$$ C ϕ : Lip 0 ( M ) ⟶ Lip 0 ( N ) is an isometry depending on the properties of $$\phi $$ ϕ . We obtain a complete characterisation of those operators $$C_\phi $$ C ϕ in terms of a property of the function $$\phi $$ ϕ in the case that $$B_{{\mathcal {F}}(M)}$$ B F ( M ) is the closed convex hull of its preserved extreme points. Also, we obtain necessary condition for $$C_\phi $$ C ϕ being an isometry in the case that M is geodesic.


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


1996 ◽  
Vol 54 (1) ◽  
pp. 87-97 ◽  
Author(s):  
M. Coodey ◽  
S. Simons

We shall show how each multifunction on a Banach space determines a convex function that gives a considerable amount of information about the structure of the multifunction. Using standard results on convex functions and a standard minimax theorem, we strengthen known results on the local boundedness of a monotone operator, and the convexity of the interior and closure of the domain of a maximal monotone operator. In addition, we prove that any point surrounded by (in a sense made precise) the convex hull of the domain of a maximal monotone operator is automatically in the interior of the domain, thus settling an open problem.


Sign in / Sign up

Export Citation Format

Share Document