scholarly journals Simplifying coefficients in a family of nonlinear ordinary differential equations

2019 ◽  
Vol 22 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Feng Qi

By virtue of the Faá di Bruno formula, properties of the Stirling numbers and the Bell polynomials of the second kind, the binomial inversion formula, and other techniques in combinatorial analysis, the author finds a simple, meaningful, and signicant expression for coefficients in a family of nonlinear ordinary differential equations.


2018 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Feng Qi

In the paper, by virtue of the Faá di Bruno formula, properties of the Bell polynomials of the second kind, and the inversion formula for the Stirling numbers of the first and second kinds, the author finds simple, meaningful, and significant forms for coefficients in two families of ordinary differential equations.



Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second kind.



Author(s):  
Feng Qi ◽  
Jing-Lin Wang ◽  
Bai-Ni Guo

In the paper, by virtue of techniques in combinatorial analysis, the authors simplify two families of nonlinear ordinary differential equations in terms of the Stirling numbers of the first kind.



2018 ◽  
Vol 72 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

Abstract In the paper, the authors apply Faà di Bruno formula, some properties of the Bell polynomials of the second kind, the inversion formulas of binomial numbers and the Stirling numbers of the first and the second kind, to significantly simplify coefficients in two families of ordinary differential equations associated with the higher order Frobenius–Euler numbers.



Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Fa`a di Bruno formula, some properties of the Bell polynomials of the second kind, and the inversion formulas of binomial numbers and the Stirling numbers of the first and second kinds, the authors simplify meaningfully and significantly coefficients in two families of ordinary differential equations associated with higher order Frobenius–Euler numbers.



Author(s):  
Feng Qi ◽  
Xiao-Long Qin ◽  
Yong-Hong Yao

In the paper, by the Faά di Bruno formula, several identities for the Bell polynomials of the second kind, and an inversion theorem, the authors simplify coefficients of two families of nonlinear ordinary differential equations for the generating function of the Catalan numbers and discover inverses of fifteen closely related lower triangular integer matrices.



Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Tanveer Sajid ◽  
Muhammad Sagheer ◽  
Shafqat Hussain ◽  
Faisal Shahzad

AbstractThe double-diffusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms and magnetohydrodynamics past a stretching sheet is examined. By adopting the scaling group of transformation, the governing equations of motion are transformed into a system of nonlinear ordinary differential equations. The Keller box scheme, a finite difference method, has been employed for the solution of the nonlinear ordinary differential equations. The behaviour of the working fluid against various parameters of physical nature has been analyzed through graphs and tables. The behaviour of different physical quantities of interest such as heat transfer rate, density of the motile gyrotactic microorganisms and mass transfer rate is also discussed in the form of tables and graphs. It is found that the modified Dufour parameter has an increasing effect on the temperature profile. The solute profile is observed to decay as a result of an augmentation in the nanofluid Lewis number.



2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.



Sign in / Sign up

Export Citation Format

Share Document