scholarly journals Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers

2015 ◽  
Vol 65 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Anochar Kaewwongwal ◽  
Alisa Kongjaimun ◽  
Prakit Somta ◽  
Sompong Chankaew ◽  
Tarikar Yimram ◽  
...  
2005 ◽  
Vol 53 (4) ◽  
pp. 793-802 ◽  
Author(s):  
M. Hasan ◽  
F. Seyis ◽  
A. G. Badani ◽  
J. Pons-Kühnemann ◽  
W. Friedt ◽  
...  

Author(s):  
V. S. Mandrusova ◽  
I. S. Gordej ◽  
O. M. Lyusikov ◽  
V. E. Shimko ◽  
I. A. Gordej

In this work, the genetic diversity of the modern gene pool of the winter rye (S. cereal L.) of the Republic of Belarus from 20 actual breeding samples was investigated using 15 microsatellite (SSR) markers to develop divergent crossing combinations in breeding for heterosis. It was shown that the formed set of SSR markers is highly effective – the informational content index (PIC) varied from 0.50 to 0.83 and averaged 0.72. The most effective microsatellite markers (SCM28, SCM43, SCM101 and SCM102) were identified and can be successfully used to study the genetic diversity of rye. It has been established that the modern gene pool of the winter rye of the Republic of Belarus is generally characterized by fairly wide genetic diversity (interpopulation variability) – all collection samples are characterized by a unique allelic composition of the studied microsatellite loci. Based on investigation results, a hierarchical clustering dendrogram was constructed, which made it possible to determine the most genetically divergent combinations of crosses. The information obtained can be used for the development of an effective scheme allowing to develop new varieties and hybrids in the practical breeding of rye for heterosis.


Author(s):  
S. P. Jeevan Kumar ◽  
C. Susmita ◽  
K. V. Sripathy ◽  
Dinesh K. Agarwal ◽  
Govind Pal ◽  
...  

Abstract Background The genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers. Methods and results A total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean. Conclusion In the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar’s pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.


2010 ◽  
Vol 90 (4) ◽  
pp. 443-452 ◽  
Author(s):  
T. Karuppanapandian ◽  
H W Wang ◽  
T. Karuppudurai ◽  
J. Rajendhran ◽  
M. Kwon ◽  
...  

The DNA fingerprinting methodologies, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), were used to estimate genetic diversity and relationships among 20 black gram (Vigna mungo L. Hepper) varieties. Thirty selected RAPD primers amplified 255 bands, 168 of which were polymorphic (66.5%). On average, these primers produced 8.5 bands, 5.6 of which were polymorphic. Polymorphic band number varied from 2 (A-05) to 10 (OPA-02), with sizes ranging from 100 to 2550 bp. Twenty-four selected ISSR primers produced 238 amplified products, 184 of which were polymorphic (77.8%). On average, these primers generated 9.8 bands, with 7.7 polymorphic bands ranging in number from 4 (ISSR-13) to 11 (ISSR-03), and size from 100-2650 bp. Genetic relationships were estimated using similarity coefficient (Jaccard’s) values between different accession pairs; these varied from 30.7 to 85.0 for RAPD, and from 37.2 to 88.4 with ISSR. UPGMA analysis indicated that the varieties ranged in similarity from 0.50 to 1.00 (mean of 0.75) for RAPD, and from 0.47 to 1.00 (mean of 0.76) with ISSR. Cluster analysis of RAPD and ISSR results identified three clusters with significant bootstrap values, which revealed greater homology between the varieties. Principal coordinates analysis also supported this conclusion. Among the black gram varieties, WBU-108 and RBU-38 were highly divergent, whereas LBG-648 and LBG-623 were genetically similar. The markers generated by RAPD and ISSR assays can provide practical information for the management of genetic resources and these results will also provide useful information for the molecular classification and breeding of new black gram varieties.Key words: Black gram, cluster analysis, genetic diversity, ISSR, molecular markers, RAPD


Author(s):  
Dondiba Kundagar ◽  
N. Brajendra Singh ◽  
M. Samuel Jeberson ◽  
Bireswar Sinha ◽  
N. Gopimohan Singh

Author(s):  
Divya Vyas ◽  
Arunabh Joshi ◽  
Ganesh Rajamani ◽  
Devendra Jain

A study was carried out among 22 black gram genotypes to study the genetic diversity using 20 ISSR primers. Screening of the primers revealed that only 15 out of the 20 primers produced amplification. A total of 84 amplified bands were obtained, out of which 72 were polymorphic 85.71 percent polymorphism. The total number of amplified bands varied between 1 (UBC-813 and UBC-878) and 9 (UBC-826) with an average of 5 bands per primer. The overall size of PCR amplified products ranged between 250 bp to 2000 bp. PIC values ranged from 0.00 to 0.51 with an average of 0.285 across all genotypes. Five unique bands were detected in four genotypes, out of which the genotype U-9 gave maximum number of distinct bands. The size of these unique bands ranged from 450 bp to 2000 bp. Based on the UPGMA derived dendrogram and PCA, the 22 genotypes could be divided into four main clusters. While Cluster I included 16 genotypes, the Clusters II, III and IV included two genotypes each. Genotypes IC-16511 and UTTARA, UH-177 and IPU2K-21, STY-2834 and UH-177 were found to be genetically distant from each other with a minimum similarity value of 0.42. The results are encouraging with the suggestion that the ISSR marker could prove to be a versatile tool in further screening of the Vigna germplasm pool for study of genetic divergence and the establishment of phylogenetic relationship amongst accessions.


Sign in / Sign up

Export Citation Format

Share Document