Inverse Kinematic Solution of Robot Manipulator Using Hybrid Neural Network

Author(s):  
Panchanand Jha ◽  
Bibhuti B. Biswal ◽  
Om Prakash Sahu
2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881829 ◽  
Author(s):  
Rongbo Zhao ◽  
Zhiping Shi ◽  
Yong Guan ◽  
Zhenzhou Shao ◽  
Qianying Zhang ◽  
...  

The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.


Author(s):  
Phani K. Nagarjuna ◽  
Athamaram H. Soni

Abstract The problem of inverse kinematics in Robotics, is a nonlinear mapping from a given cartesian coordinates to the desirable joint coordinates of the robot arm. It is found that an appropriately designed neural network can be trained to learn the non-linearity of the Inverse Kinematic Equation (IKE). We present an approach for solving the Forward Kinematic Equation (FKE) and the IKE by means of a Multi Layer Back-Propagation Neural Network (Rumelhart et al., 1986). The neural network approach is applied to a Two Degrees-of-Freedom (DOF) robot manipulator and the results are compared with those obtained using the analytical solution. The results obtained from the simulation of the neural network indicate a fairly accurate learning of the FKE and IKE by the Multi Layer Back-Propagation Neural Network.


Robotica ◽  
1995 ◽  
Vol 13 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Dong Kwon Cho ◽  
Byoung Wook Choi ◽  
Myung Jin Chung

SummaryThe algorithms of inverse kinematics based on optimality constraints have some problems because those are based only on necessary conditions for optimality. One of the problems is a switching problem, i.e., an undesirable configuration change from a maximum value of a performance measure to a minimum value may occur and cause an inverse kinematic solution to be unstable. In this paper, we derive sufficient conditions for the optimal solution of the kinematic control of a redundant manipulator. In particular, we obtain the explicit forms of the switching condition for the optimality constraintsbased methods. We also show that the configuration at which switching occurs is equivalent to an algorithmic singularity in the extended Jacobian method. Through a numerical example of a cyclic task, we show the problems of the optimality constraints-based methods. To obtain good configurations without switching and kinematical singularities, we propose a simple algorithm of inverse kinematics.


Author(s):  
Mahesh A. Makwana ◽  
Haresh P. Patolia

For the parallel configuration of the robot manipulator, the solution of Forward Kinematics (FK) is tough as compared to Inverse Kinematics (IK). This work presents a novel hybrid method of optimizing an Artificial Neural Network (ANN) specifically Multilayer Perceptron (MLP) with Genetic Algorithm (GA) and Step-wise Linear Regression (SWLR) to solve the complex FK of Delta Parallel Manipulator (DPM). The joint space angular positional data has been iterated using IK to generate point cloud of Cartesian space positional data. This data set is highly random and broad which leads to higher-order nonlinearity. Hence, normalization of the dataset has been done to avoid outliers from the dataset and to achieve better performance. The developed ANN based MLP gave a mean square error of 0.0000762 and an overall R2 value of 0.99918. Finally, the proposed network has been simulated to solve FK of the parallel manipulator and to check its efficacy. For given joint angles, the proposed network predicted positional values which are in good approximation with known trajectory solved by standard analytical method.


Sign in / Sign up

Export Citation Format

Share Document