Inverse Kinematic Solution for Robot Manipulator Based on Electromagnetism-like and Modified DFP Algorithms

2011 ◽  
Vol 37 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Feng YIN ◽  
Yao-Nan WANG ◽  
Shu-Ning WEI
2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881829 ◽  
Author(s):  
Rongbo Zhao ◽  
Zhiping Shi ◽  
Yong Guan ◽  
Zhenzhou Shao ◽  
Qianying Zhang ◽  
...  

The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.


Robotica ◽  
1995 ◽  
Vol 13 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Dong Kwon Cho ◽  
Byoung Wook Choi ◽  
Myung Jin Chung

SummaryThe algorithms of inverse kinematics based on optimality constraints have some problems because those are based only on necessary conditions for optimality. One of the problems is a switching problem, i.e., an undesirable configuration change from a maximum value of a performance measure to a minimum value may occur and cause an inverse kinematic solution to be unstable. In this paper, we derive sufficient conditions for the optimal solution of the kinematic control of a redundant manipulator. In particular, we obtain the explicit forms of the switching condition for the optimality constraintsbased methods. We also show that the configuration at which switching occurs is equivalent to an algorithmic singularity in the extended Jacobian method. Through a numerical example of a cyclic task, we show the problems of the optimality constraints-based methods. To obtain good configurations without switching and kinematical singularities, we propose a simple algorithm of inverse kinematics.


1986 ◽  
Vol 108 (3) ◽  
pp. 163-171 ◽  
Author(s):  
Yoshihiko Nakamura ◽  
Hideo Hanafusa

The singularity problem is an inherent problem in controlling robot manipulators with articulated configuration. In this paper, we propose to determine the joint motion for the requested motion of the endeffector by evaluating the feasibility of the joint motion. The determined joint motion is called an inverse kinematic solution with singularity robustness, because it denotes feasible solution even at or in the neighborhood of singular points. The singularity robust inverse (SR-inverse) is introduced as an alternative to the pseudoinverse of the Jacobian matrix. The SR-inverse of the Jacobian matrix provides us with an approximating motion close to the desired Cartesian trajectory of the endeffector, even when the inverse kinematic solution by the inverse or the pseudoinverse of the Jacobian matrix is not feasible at or in the neighborhood of singular points. The properties of the SR-inverse are clarified by comparing it with the inverse and the pseudoinverse. The computational complexity of the SR-inverse is considered to discuss its implementability. Several simulation results are also shown to illustrate the singularity problem and the effectiveness of the inverse kinematic solution with singularity robustness.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


Sign in / Sign up

Export Citation Format

Share Document