Opportunistic Spectrum Access in Imperfect Spectrum Sensing Cognitive Networks

Author(s):  
Yonghong Chen ◽  
◽  
Huijian Wang ◽  
Shibing Zhang
2016 ◽  
Vol 8 (2) ◽  
pp. 94-110
Author(s):  
Danda B. Rawat ◽  
Sachin Shetty

Opportunistic Spectrum Access (OSA) in a Cognitive Radio Network (CRN) is regarded as emerging technology for utilizing the scarce Radio Frequency (RF) spectrum by allowing unlicensed secondary users (SUs) to access licensed spectrum without creating harmful interference to primary users (PUs). The SUs are considerably constrained by their limited power, memory and computational capacity when they have to make decision about spectrum sensing for wide band regime and OSA. The SUs in CRN have the potential to mitigate these constraints by leveraging the vast storage and computational capacity of cloud computing approaches. In this paper, the authors investigate a game theoretic approach for opportunistic spectrum access in cognitive networks. The proposed algorithm leverages the geo-locations of both SUs and spectrum opportunities to facilitate OSA to SUs. The active SUs using game theory adapt their transmit powers in a distributed manner based on the estimated average packet-error rate while satisfying the Quality-of-Service (QoS) in terms of signal-to-interference-noise-ratio (SINR). Furthermore, to control greedy SUs in distributed power control game, the authors introduce a manager/leader through a Stackelberg power adaptation game. The performance of the proposed approaches is investigated using numerical results obtained from simulations.


Sign in / Sign up

Export Citation Format

Share Document