scholarly journals Heat Transfer in MHD Micropolar Fluid Flow Past a Vertical Plate in Slip-Flow Regime

2012 ◽  
Vol 11 (3) ◽  
pp. 179-191
Author(s):  
Ramprakash Sharma ◽  
Abhay Kumar Jha

We consider unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in slip-flow regime. A uniform magnetic field acts perpendicular to the porous surface which absorbs the micropolar fluids with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using approximate method the expression for the velocity microrotation, and temperature are obtained.

2016 ◽  
Vol 13 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Narasu Siva Kumar ◽  
Rushi Kumar ◽  
A. G. Vijaya Kumar

The present study investigates an analytical solution of free convective unsteady fluid flow in presence of thermal diffusion and chemical reaction effects past a vertical porous plate with heat source dependent in slip flow regime. The plate is assumed to move with a constant velocity in the direction of fluid flow, while free stream velocity is assumed to follow exponentially increasing small perturbation law. The velocity, temperature and concentration profiles are presented graphically for different values of the parameters entering into the problem. Finally the effects of pertinent parameters on the skin friction coefficient, Nusselt number and Sherwood numbers distributions are derived and have shown through graphs and tables by using perturbation technique.


2016 ◽  
Vol 21 (2) ◽  
pp. 323-339
Author(s):  
P.K. Gaur ◽  
A.K. Jha ◽  
R. Sharma

Abstract A theoretical study is carried out to obtain an analytical solution of free convective heat transfer for the flow of a polar fluid through a porous medium with variable permeability bounded by a semi-infinite vertical plate in a slip flow regime. A uniform magnetic field acts perpendicular to the porous surface. The free stream velocity follows an exponentially decreasing small perturbation law. Using the approximate method the expressions for the velocity, microrotation, and temperature are obtained. Further, the results of the skin friction coefficient, the couple stress coefficient and the rate of heat transfer at the wall are presented with various values of fluid properties and flow conditions.


Sign in / Sign up

Export Citation Format

Share Document