scholarly journals MATHEMATICAL MODEL OF THREE SPECIES FOOD CHAIN WITH HOLLING TYPE-III FUNCTIONAL RESPONSE

Author(s):  
M.S.W. Sunaryo ◽  
Z. Salleh ◽  
M. Mamat
2012 ◽  
Vol 09 ◽  
pp. 334-340 ◽  
Author(s):  
MADA SANJAYA WS ◽  
ISMAIL BIN MOHD ◽  
MUSTAFA MAMAT ◽  
ZABIDIN SALLEH

In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.


2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


2015 ◽  
Vol 25 (06) ◽  
pp. 1550092 ◽  
Author(s):  
Walid Abid ◽  
R. Yafia ◽  
M. A. Aziz Alaoui ◽  
H. Bouhafa ◽  
A. Abichou

This paper is devoted to the study of food chain predator–prey model. This model is given by a reaction–diffusion system defined on a circular spatial domain, which includes three-state variables namely, prey and intermediate predator and top predator and incorporates the Holling type II and a modified Leslie–Gower functional response. The aim of this paper is to investigate theoretically and numerically the asymptotic behavior of the interior equilibrium of the model. The local and global stabilities of the positive steady-state solution and the conditions that enable the occurrence of Hopf bifurcation and Turing instability in the circular spatial domain are proved. In the end, we carry out numerical simulations to illustrate how biological processes can affect spatiotemporal pattern formation in a disc spatial domain and different types of spatial patterns with respect to different time steps and diffusion coefficients are obtained.


2006 ◽  
Vol 14 (03) ◽  
pp. 387-412 ◽  
Author(s):  
ALAKES MAITI ◽  
G. P. SAMANTA

Complex dynamics of a tritrophic food chain model is discussed in this paper. The model is composed of a logistic prey, a classical Lotka-Volterra functional response for prey-predator and a ratio-dependent functional response for predator-superpredator. Dynamical behaviors such as boundedness, stability and bifurcation of the model are studied critically. The effect of discrete time-delay on the model is investigated. Computer simulation of various solutions is presented to illustrate our mathematical findings. How these ideas illuminate some of the observed properties of real populations in the field is discussed and practical implications are explored.


Sign in / Sign up

Export Citation Format

Share Document