A Particle Swarm Runge-Kutta Optimization Algorithm for Solving the BVP of Ordinary Differential Equation

2014 ◽  
Vol 11 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Lipu Zhang
2008 ◽  
Vol 368-372 ◽  
pp. 1683-1685
Author(s):  
Cheng Long Yu ◽  
Xiu Feng Wang ◽  
Jun Xin Zhou ◽  
Hong Tao Jiang ◽  
Yan Wang

Numerical modeling on falling of sodiumtetraborate aqueous solution drops as the initiator before the gelation of PVA-TiO2 suspensions was conducted. Effect of time and elevation angle of the PVA-TiO2 suspensions on the falling velocity of the sodiumtetraborate aqueous solution drops was analyzed. An ordinary differential equation was given. Integration of the ordinary differential equation was fulfilled using the fourth-order Runge-Kutta method in Matlab 6.5. From the model, a two-order nonlinear effect of time on the velocity of the drops during falling is determined and the quadratic term -3.408t2 serves as the time dependent air resistance. The component of the falling velocity along the suspensions increases with the increasing of the elevation angle. However, for the component vertical to the suspensions, with elevation angle increasing, it decreases.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
I. B. Aiguobasimwin ◽  
R. I. Okuonghae

In this paper, a new class of two-derivative two-step Runge-Kutta (TDTSRK) methods for the numerical solution of non-stiff initial value problems (IVPs) in ordinary differential equation (ODEs) is considered. The TDTSRK methods are a special case of multi-derivative Runge-Kutta methods proposed by Kastlunger and Wanner (1972). The methods considered herein incorporate only the first and second derivatives terms of ODEs. These methods possess large interval of stability when compared with other existing methods in the literature. The experiments have been performed on standard problems, and comparisons were made with some standard explicit Runge-Kutta methods in the literature.


2019 ◽  
Vol 5 (2) ◽  
pp. 64
Author(s):  
Hippolyte Séka ◽  
Kouassi Richard Assui

In this article, we demonstrate through specific examples that the evolution of the size of the absolute stability regions of Runge–Kutta methods for ordinary differential equation does not depend on the order of methods.


1992 ◽  
Vol 02 (03) ◽  
pp. 427-449 ◽  
Author(s):  
JULYAN H. E. CARTWRIGHT ◽  
ORESTE PIRO

The first step in investigating the dynamics of a continuous-time system described by an ordinary differential equation is to integrate to obtain trajectories. In this paper, we attempt to elucidate the dynamics of the most commonly used family of numerical integration schemes, Runge–Kutta methods, by the application of the techniques of dynamical systems theory to the maps produced in the numerical analysis.


Sign in / Sign up

Export Citation Format

Share Document